Pacific Journal of Mathematics

The soft torus and applications to almost commuting matrices.

Ruy Exel

Article information

Source
Pacific J. Math., Volume 160, Number 2 (1993), 207-217.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102624214

Mathematical Reviews number (MathSciNet)
MR1233352

Zentralblatt MATH identifier
0781.46048

Subjects
Primary: 46L80: $K$-theory and operator algebras (including cyclic theory) [See also 18F25, 19Kxx, 46M20, 55Rxx, 58J22]
Secondary: 46L05: General theory of $C^*$-algebras

Citation

Exel, Ruy. The soft torus and applications to almost commuting matrices. Pacific J. Math. 160 (1993), no. 2, 207--217. https://projecteuclid.org/euclid.pjm/1102624214


Export citation

References

  • [Co] J. H. Conway, An enumeration of knots and links and some of their relatedproperties,Computational problems in abstract algebra, (1969), 329-358.
  • [Cr] P. R. Cromwell, Homogeneous links, J. London Math. Soc, (2) 39 (1989), 535-552.
  • [FYHLMO] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. C. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc, 12 (1985), 239-246.
  • [Ka] A. Kawauchi, Imitations of (3, \)-dimensional manifold pairs, Sugaku, 40 (1988), 193-204 (in Japanese); Sugaku Expositions, 2 (1989), 141- 156 (in English).
  • [Mol] H. R. Morton, Infinitely many fibred knots with the same Alexander polynomial, Topology, 17 (1978), 101-104.
  • [Mo2] H. R. Morton, Fibred knots with a given Alexander polynomial, Noeuds, tresses et singularites, Plan-sur-Bex (1982) L'enseignement Math, monograph
  • [Mo3] H. R. Morton, Seifert circles and knot polynomials, Math. Proc. Cambridge Philo- sophical Soc, 99 (1986), 107-141.
  • [Ne] L. P. Neuwirth, The Status of Some Problems Related to Knot Groups, Lecture Note in Math. 375, Springer-Verlag, (1974), 209-230.
  • [PT] J. H. Prztycki and P. Traczyk, Invariants of links ofConwav tvpe, Kobe J. Math., 4(1987), 115-139.
  • [1] B. Blackadar, Shape theoryfor C*-algebras, Math. Scand. 56 (1985), 249-275.
  • [2] L. G. Brown, R. G. Douglas and P. A. Filmore, Extensions of C*-algebras and K-homology, Ann. of Math., 105 (1977), 265-324.
  • [3] M. D. Choi, Almost commuting matrices need not be nearly commuting, Proc. Amer. Math. So, 102 (1988), 529-533.
  • [4] J. Cuntz, The K-groupsfor free products of C*-algebras, Operator Algebras and Applications (ed. R. V. Kadison), Proc. Sympos. Pure Math., vol. 38, Amer: Math. Soc, Providence, RI (1982), 81-84.
  • [5] K. R. Davidson, Almost commuting hermitian matrices, Math. Scand., 56 (1985), 222-240.
  • [6] R. Exel, Rotation numbers for automorphisms of C*-algebras, Pacific J. Math., 127 (1987), 31-89.
  • [7] R. Exel and T. A. Loring, Extending cellularcohomology to C* -algebras,Trans. Amer. Math. Soc. 329 (1992), 141-160.
  • [8] R. Exel and T. A. Loring, Almost commuting unitary matrices, Proc. Amer. Math. Soc, 106 (1989), 913-915.
  • [9] R. Exel and T. A. Loring, Invariants of almost commutingunitaries, J. Funct. Anal., 95 (1991), 364-376.
  • [10] P. R. Halmos, Some unsolved problems of unknown depth about operators on Hilbert space, Proc. Roy. Soc. Edinburgh Sect. A, 76 (1976), 67-76.
  • [11] P. de la Harpe and G. Skandalis, Determinant associea une tracesur unealgebre de Banach, Ann. Inst. Fourier, 34 (1984).
  • [12] G. G. Kasparov, The operator K-functor and extensions of C*-algebras, Izv. Akad. Nauk SSSR, Ser. Mat., 44 (1980), 571-636.
  • [13] T. A. Loring, K-theory and asymptotically commuting matrices, Canad. J. Math., 40(1988), 197-216.
  • [14] M. Pimsner, Range of traces on KQ of reduced crossedproducts byfree groups, in Operator algebras and their connections with topology and ergodic theory, Proceedings, Bustenni, Romania 1983; Springer Lect. Notes in Math., 1132 (1985), 374-408.
  • [15] M. Pimsner and D. Voiculescu, Exact sequencesfor K groups and Ext groups of certain crossedproduct C*-algebras,J. Operator Theory 4 (1980), 93-118.
  • [16] M. A. Rieffel, Induced representations of C*-algebras, Adv. Math., 13 (1974), 176-257.
  • [17] D. Voiculescu, Asymptotically commuting finite rank unitary operatorswithout commuting approximants, Acta Sci. Math. (Szeged), 45 (1983), 429-431.
  • [18] D. Voiculescu, Remarks on the singular extension in the C* -algebra of the Heisenberg group, J. Operator Theory, 5 (1981), 147-170.