Pacific Journal of Mathematics

Entropy versus orbit equivalence for minimal homeomorphisms.

Mike Boyle and David Handelman

Article information

Source
Pacific J. Math., Volume 164, Number 1 (1994), 1-13.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102622279

Mathematical Reviews number (MathSciNet)
MR1267499

Zentralblatt MATH identifier
0812.58025

Subjects
Primary: 28D05: Measure-preserving transformations
Secondary: 28D20: Entropy and other invariants 46L55: Noncommutative dynamical systems [See also 28Dxx, 37Kxx, 37Lxx, 54H20]

Citation

Boyle, Mike; Handelman, David. Entropy versus orbit equivalence for minimal homeomorphisms. Pacific J. Math. 164 (1994), no. 1, 1--13. https://projecteuclid.org/euclid.pjm/1102622279


Export citation

References

  • [B] M. Boyle, Topological orbit equivalence andfactor maps insymbolic dynamics, Ph.D. Thesis, University of Washington, Seattle,1983.
  • [DGS] M. Denker, C. Grillenberger andK. Sigmund, Ergodc Theory on Compact Spaces, Lecture Notes in Math.,vol. 527,Springer-Verlag, 1976.
  • [D] H.Dye, Ongroups of measurepreservingtransformations, Amer. J.Math., 81 (1959), 119-159.
  • [EHS] E. G.EfFros, D.E. Handelman andC-L. Schen, Dimension groups and their affine representations,Amer. J. Math., 102(1980), 385-407.
  • [GPS] T. Giordano,I.F.Putnam andC.F.Skau, Topologicalorbit equivalence and C* crossed products, inpreparation.
  • [HPS] R. H. Herman, I. F. Putnam and C. F. Skau, Ordered Bratteli diagrams, dimension groups, and topological dynamics, Internat. J. Math., 3 (1992), 827-864.
  • [K] W. Krieger, On unique ergodicty,Proc.of the Sixth Berkeley Symposiumon Mathematics, Statistics, andProbability, Berkeley andLosAngeles, Univer- sity of California Press, 1 (1972), 327-346.
  • [LL] A. J. Lazar andJ. Lindenstrauss, Banach spaces whose dual are L\ spaces and their representing matrices, Acta Math., 126 (1971), 165-193.
  • [P] I. F.Putnam, The C*-algebras associatedwith minimal homeomorphisms of the Cantor set,Pacific J. Math., 136(1989), 329-353.
  • [Sk] C. Skau, Minimal dynamical systems, orderedBratteli diagrams and associ- ated C*-crossed products, (preprint),Proceedings Nara Conference, 1991.
  • [V] A. M.Vershik, Uniform algebraicapproximation of shift and multiplication operators,Soviet Math. Dokl., 24 (1) (1981), 97-100.
  • [Wa] P.Walters, An Introduction toErgodic Theory, GraduateTexts in Mathemat- ics, vol.79,Springer-Verlag, 1981.