Pacific Journal of Mathematics

Oriented orbifold cobordism.

K. S. Druschel

Article information

Source
Pacific J. Math., Volume 164, Number 2 (1994), 299-319.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102622097

Mathematical Reviews number (MathSciNet)
MR1272653

Zentralblatt MATH identifier
0796.57014

Subjects
Primary: 57R75: O- and SO-cobordism

Citation

Druschel, K. S. Oriented orbifold cobordism. Pacific J. Math. 164 (1994), no. 2, 299--319. https://projecteuclid.org/euclid.pjm/1102622097


Export citation

References

  • [I] A. Borel and F. Hirzebruch, Characteristicclasses and homogeneous spaces I, Amer. J. Math., 80 (1958), 458-538.
  • [2] G Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972.
  • [3] T. Broker and T. torn Dieck, Representations ofCompact Lie Groups,Springer GTM 98, Berlin, 1985.
  • [4] P. E. Conner and E. E. Floyd, Differentiate Periodic Maps, Springer, Berlin, 1964.
  • [5] M. Davis, Unpublished Lecture notes, (1988).
  • [6] K. Druschel, Ph.D.Thesis, the Ohio State University, (1990).
  • [7] A. Haeflinger, Groupoidesd'holonomie etclassifiants,Structure Transverse der Feuilletages, Asterisque, 116 (1984), 70-97.
  • [8] D. Husemoller, Fiber Bundles, McGraw-Hill, New York, 1966.
  • [9] T.Kawasaki, The signature theorem for V-manifolds, Topology, 17(1978), 75-83.
  • [10] C. N. Lee and A. Wasserman, Equivariant Characteristic Numbers, Springer Lecture Notes 298, Berlin, 1972, 191-216.
  • [II] D. Littlewood, The Theory ofGroup Charactersand Matrix Representations of Groups,Oxford Univ. Press, 1940.
  • [12] J. Milnor and J. Stasheff, CharacteristicClasses,Ann. of Math. Stud., 76 (1974).
  • [13] I. Satake, The Gauss-Bonnet Theorem for V-manifolds, J. Math. Soc. Japan, 9 (1957), 464-476.
  • [14] R. E. Stong, Notes on Cobordism Theory, Princeton Math. Notes, Princeton Univ. Press, 1968.
  • [15] W. Thurston, The Geometry and Topology of 3-manifolds, reproduced lecture notes, Princeton University, 1978.
  • [16] D. Zagier, Equivariant Pontrjagin Classes and Applications to Orbit Spaces, Springer Lecture Notes 290, Berlin (1972).