Pacific Journal of Mathematics

Continuity of convex hull boundaries.

Linda Keen and Caroline Series

Article information

Source
Pacific J. Math., Volume 168, Number 1 (1995), 183-206.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102620682

Mathematical Reviews number (MathSciNet)
MR1331998

Zentralblatt MATH identifier
0838.30043

Subjects
Primary: 30F40: Kleinian groups [See also 20H10]
Secondary: 57M50: Geometric structures on low-dimensional manifolds

Citation

Keen, Linda; Series, Caroline. Continuity of convex hull boundaries. Pacific J. Math. 168 (1995), no. 1, 183--206. https://projecteuclid.org/euclid.pjm/1102620682


Export citation

References

  • [1] L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, 1966.
  • [2] F. Bonahon, The geometry of Teichmller space via geodesic currents, Inventiones mathematicae, 92 (1988), 139-162.
  • [3] R .D.Canary,D. B. A. Epstein,and P. Green, Notes on notes of Thurston, In D.B.A. Epstein, editor, Analytical and Geometric Aspects of Hyper- bolic Space, LMS Lecture Notes 111, pages 3-92. Cambridge University Press, 1987.
  • [4] J. Cannon, The combinatorial structure of discrete hyperbolic groups, Geometrica Dedicata, 16 (1984), 123-148.
  • [5] D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, in D. B. A. Epstein, editor, Analytical and Geometric Aspects of Hyperbolic Space, LMS Lec- ture Notes 111, pages 112-253. Cambridge University Press, 1987.
  • [6] A. Fahti, P. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces, 66-67, Asterisque, Societe Mathematiquede Prance, 1979.
  • [7] L. Keen and C. Series, Pleating coordinates for the Maskit embedding of the Teichmller space of punctured tori, Topology, 32 (1993), No. 4, 719-749.
  • [8] L. Keen and C. Series, Pleating coordinates for the Riley slice of Schottky space, preprint.
  • [9] L. Keen and C. Series, Pleating coordinates for the Teichmller space of punctured tori, Bull. Amer. Math. Soc, 26(1):141,146, 1992.
  • [10] S. Kerckhoff, Earthquakes are analytic, Comment. Mat. Helv., 60 (1985), 17-30.
  • [11] A. Marden, The geometry of finitely generated Kleinian groups, Ann. Math., 99 (1974), 383-462.
  • [12] R.L. Moore, Concerning upper semi-continuouscollections of continua, Trans. Amer. Math. Soc, 27 (1925), 416-428.
  • [13] C. Rourke, Convex ruled surfaces, In D.B.A. Epstein, editor, Analytical and Geometric Aspects of Hyperbolic Space, LMS Lecture Notes 111, pages 255-323, Cambridge University Press, 1987.
  • [14] W. P. Thurston, The geometry and topology of three-manifolds, Unpub- lishedmanuscript.
  • [15] W. P. Thurston, Minimal stretch maps betweenhyperbolicsurfaces,preprint.