Pacific Journal of Mathematics

On uniform homeomorphisms of the unit spheres of certain Banach lattices.

Fouad Chaatit

Article information

Source
Pacific J. Math., Volume 168, Number 1 (1995), 11-31.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102620676

Mathematical Reviews number (MathSciNet)
MR1331992

Zentralblatt MATH identifier
0823.46016

Subjects
Primary: 46B42: Banach lattices [See also 46A40, 46B40]

Citation

Chaatit, Fouad. On uniform homeomorphisms of the unit spheres of certain Banach lattices. Pacific J. Math. 168 (1995), no. 1, 11--31. https://projecteuclid.org/euclid.pjm/1102620676


Export citation

References

  • [2] The main result. We now state the main result of this work. THEOREM 2.1.Let X be an infinite dimensional Banach lattice with a weak unit. Then there exists a probability space (, , ) so that 5(L(, , )) is uniformly homeomorphic to S(X) if and only if X does not contain /^ uniformly in n. Our proof of Theorem 2.1 will yield two quantitative results:
  • [L T] Then the proof goes as in [O.S]. By a theorem of Maurey and Pisier [MP] X must have a finite cotype q'. Thus X is g-concave, in fact for all q > q' ([L.T, p.88]). Renorm X by an equivalent norm for which Mq(X) = 1 and such that X has the same lattice
  • [B] Y. Benyamini, The uniform classificationof Banach spaces,Longhorn Notes 1984-85, TheUniversity of Texas at Austin.
  • [E] P. Enflo, On a problemof Smirnov, Ark. Mat.,8 (1969),107-109.
  • [G] T.A. Gillespie Factorizationin Banachfunction spaces,Indag. Math., 43 (1981),287-300.
  • [L] G.Ya. Lozanovskii,On some BanachLattices3, Sibirsk. Math. J., 13 (1972),1304-13.
  • [L.T] J. Lindenstrauss andL.Tzafriri, Classical BanachSpaces, vol 2,Springer Verlag, NY, (1979).
  • [M] S. Mazur, Uberkonvexe Mengen in linearennormierte Rumen, Studia Math., 4 (1933), 70-84.
  • [M.P] B. Maurey and G. Pisier, Series de variablesaleatoiresindependantes et proprietesgeometriques des espaces de Banach, Studia Math.,58 (1976), 45-90.
  • [O.S] E. Odell and Th. Schlumprecht, The distortion problem, Acta Math., 173 (1994), 259-281.
  • [R] Y. Raynaud, Espacesde Banach superstables, distancesstableset homeo- morphismes uniformes,Israel J. Math., 44 (1983), 33-52.