Pacific Journal of Mathematics

Weighted Hadamard products of holomorphic functions in the ball.

Jacob Burbea and Song-Ying Li

Article information

Source
Pacific J. Math., Volume 168, Number 2 (1995), 235-270.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102620560

Mathematical Reviews number (MathSciNet)
MR1339952

Zentralblatt MATH identifier
0832.32004

Subjects
Primary: 32A37: Other spaces of holomorphic functions (e.g. bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA)) [See also 46Exx]
Secondary: 32A05: Power series, series of functions 32A35: Hp-spaces, Nevanlinna spaces [See also 32M15, 42B30, 43A85, 46J15]

Citation

Burbea, Jacob; Li, Song-Ying. Weighted Hadamard products of holomorphic functions in the ball. Pacific J. Math. 168 (1995), no. 2, 235--270. https://projecteuclid.org/euclid.pjm/1102620560


Export citation

References

  • [1] F. Beatrous and J. Burbea, Characterizations of spaces of holomorphic functions in the ball, Kodai Math. J., 8 (1985), 36-51.
  • [2] F. Beatrous and J. Burbea, Holomorphic Sobolev spaces on the ball, Dissertationes Math., 276 (1989), 1-57.
  • [3] R.R. Coifman, R.R. Rochberg and G. Weiss, Factorizations theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611-635.
  • [4] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
  • [5] M. Mateljevic and M. Pavlovic, Multipliers of Hp and BMOA,Pacific J. Math., 146 (1990), 71-84.
  • [6] M. Pavlovic,An inequality for the integral means of a Hadamard product, Proc. Amer. Math. Soc, 103 (1988), 404-406.
  • [7] W. Rudin, Function Theory in the Unit Ball ofO1, Springer-Verlag, New York, 1980.
  • [8] J. Shi, Hadamard products of functions holomorphic in the unit ball of Cn, preprint.