Pacific Journal of Mathematics

Multiplicative functions on free groups and irreducible representations.

M. Gabriella Kuhn and Tim Steger

Article information

Pacific J. Math., Volume 169, Number 2 (1995), 311-334.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 20E05: Free nonabelian groups
Secondary: 22D10: Unitary representations of locally compact groups 43A35: Positive definite functions on groups, semigroups, etc.


Kuhn, M. Gabriella; Steger, Tim. Multiplicative functions on free groups and irreducible representations. Pacific J. Math. 169 (1995), no. 2, 311--334.

Export citation


  • [1] A. Alesina and L. De Michele, A dichotomy for a class of positive definite functions, Pacific J. Math., 103 (1982), 251-257.
  • [2] C.A.Akemann and P.A.Ostrand, Computing norms in group C*-algebras, Amer. J. Math., 98 (1976), 1015-1047.
  • [3] C. Cecchini and A. Figa-Talamanca, Projections of uniqueness for LP(G), Pacific J. Math., 51 (1974), 37-47.
  • [4] L. De Michele and A. Figa-Talamanca, Positive definite functions on free groups, Amer. J. Math., 102 (1980), 503-509.
  • [5] A. Figa-Talamanca and A.M. Picardello, Spherical functions and har- monic analysis on free groups, J. Funct. Anal., 47 (1982), 281-304.
  • [6] A. Figa-Talamanca and A.M. Picardello, Harmonic Analysis on Free Groups, Lecture Notes in Pure and Appl. Math., 87, Marcel Dekker, New York, 1983.
  • [7] A. Figa-Talamanca and C. Nebbia, Harmonic Analysis and Representa- tion Theory for Groups Acting on Homogeneous Trees, London Mathe- matical Society Lecture Note Series, 162, Cambridge University Press, Cambridge, 1991.
  • [8] A. Figa-Talamanca and T. Steger Harmonic analysis for anisotropic ran- dom walks on homogeneous trees, Mem. Amer. Math. Soc, 531,215- 216.
  • [9] U. Haagerup, An Example of a non nuclear C*-algebra which has the metric approximation property, Invent. Math., 50 (1979), 279-293.
  • [10] G. W. Mackey, The theory of unitary group representations, Chicago Lectures in Mathematics, The University of Chicago Press Chicago and London,1976.
  • [11] A.M. Mantero, T. Pytlik, R. Szwarc and A. Zappa, Equivalence of two series of spherical representations of a free group, Ann. Mat. Pura e Appl., to appear.
  • [12] T. Pytlik and R. Szwarc, An analytic family of uniformly bounded rep- resentations of free groups, Acta Math., 157 (1986), 287-309.
  • [13] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
  • [14] R. Szwarc An analytic family of irreducible representations offree group, Annales Inst. Fourier, 38 (1988), 87-110.