Pacific Journal of Mathematics

Fine structure of the Mackey machine for actions of abelian groups with constant Mackey obstruction.

Siegfried Echterhoff and Jonathan Rosenberg

Article information

Source
Pacific J. Math., Volume 170, Number 1 (1995), 17-52.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102371108

Mathematical Reviews number (MathSciNet)
MR1359971

Zentralblatt MATH identifier
0853.46066

Subjects
Primary: 46L55: Noncommutative dynamical systems [See also 28Dxx, 37Kxx, 37Lxx, 54H20]
Secondary: 22D25: $C^*$-algebras and $W^*$-algebras in relation to group representations [See also 46Lxx] 46L05: General theory of $C^*$-algebras

Citation

Echterhoff, Siegfried; Rosenberg, Jonathan. Fine structure of the Mackey machine for actions of abelian groups with constant Mackey obstruction. Pacific J. Math. 170 (1995), no. 1, 17--52. https://projecteuclid.org/euclid.pjm/1102371108


Export citation

References

  • [1] L. Baggett and A. Kleppner, Multiplier representations of abeliangroups,J. Funct. Anal., 14 (1973), 299-324.
  • [2] L. Baggett and T. Sund, The Hausdorff dual problem for connected groups, J. Funct. Anal., 43 (1981), 60-68.
  • [3] M. De Brabanter, The classificationof rational rotation C* -algebras, Arch. Math. (Basel), 43 (1984), 79-83.
  • [4] J. Dixmier and A. Douady, Champs continus d'espaceshilbertiens et de C* -algebres, Bull. Soc. Math. Prance, 91 (1963), 227-284.
  • [5] S. Echterhoff, On inducedcovariant systems, Proc. Amer. Math. Soc, 108 (1990), 703-706.
  • [6] S. Echterhoff, Regularizationsof twisted covariant systems and crossed products withcon- tinuous trace,J. Funct. Anal., 116 (1993), 277-313.
  • [7] S. Echterhoff, On transformation group C*-algebraswith continuous trace,Trans. Amer. Math. Soc, 343 (1994), 117-133.
  • [8] S. Echterhoff, Morita equivalenttwisted actions and a new version of the Packer-Raeburn stabilization trick, J. London Math. Soc, 50 (1994), 170-186.
  • [9] S. EchterhofF and E. Kaniuth, Certain group extensions and twisted covariance algebras with generalizedcontinuous trace,Harmonic Analysis (Proceedings, 1987) (P. Eymard and J.-P. Pier, eds.), Lecture Notes in Math., vol. 1359, Springer- Verlag, Berlin, Heidelberg, and New York, 1988, pp. 159-169.
  • [10] S. EchterhofF, E. Kaniuth, and A. Kumar, A qualitative uncertainty principle for certain locallycompactgroups,Forum Math., 3 (1991), 355-369.
  • [11] E.C. Gootman, On certain properties of crossedproducts, Operator Algebras and Applications (Kingston, Ont., 1980) (R.V. Kadison, ed.), Proc. Symp. Pure Math., vol. 38, part 1, Amer. Math. Soc, Providence, R.I., 1982, pp. 311-321.
  • [12] E.C. Gootman and J. Rosenberg, The structure of crossedproduct C*-algebras: A Proof of the generalized Effros-Hahn conjecture, Invent. Math., 52 (1979), 283-298.
  • [13] P. Green, C*-algebrasof transformation groups with smooth orbit space, Pacific J. Math., 72 (1977), 71-97.
  • [14] P. Green, The local structure of twisted covariancealgebras, Acta Math., 140 (1978), 191-250.
  • [15] S. Hurder, D. Olesen, I. Raeburn, and J. Rosenberg, The Connes spectrum for actions of abelian groupson continuous-tracealgebras, Ergodic Theory and Dynam. Sys., 6 (1986), 541-560.
  • [16] E. Kaniuth, Primitive ideal spaces of groups with relatively compact conjugacy classes,Arch. Math., 32 (1979), 16-24.
  • [17] J. Liukkonen, Dual spaces of groups with precompact conjugacy classes, Trans. Amer. Math. Soc, 180 (1973), 85-108.
  • [18] D. Olesen and I. Raeburn, Pointwise unitary automorphism groups,J. Funct. Anal., 93 (1990), 278-309.
  • [19] J. Packer and I. Raeburn, Twisted crossedproducts of C* -algebras,Math. Proc Camb. Phil. Soc, 106 (1989), 293-311.
  • [20] J. Packer and I. Raeburn, On the structure of twisted group C*-algebras, Trans. Amer. Math. Soc, 334 (1992), 685-718.
  • [21] R.S. Palais, On the existence of slicesfor actions of non-compact Lie-groups, Ann. of Math. (2), 73 (1961), 295-323.
  • [22] J. Phillips and I. Raeburn, Crossed products by locallyunitary automorphismgroups and principal bundles, J. Operator Theory, 11 (1984), 215-241.
  • [23] I. Raeburn, On crossedproducts and Takai duality, Proc Ed. Math. Soc, 31 (1988), 321-330.
  • [24] I. Raeburn and J. Rosenberg, Crossedproducts of continuous-trace C*-algebras by smooth actions, Trans. Amer. Math. Soc, 305 (1988), 1-45.
  • [25] I. Raeburn and D. Williams, Pull-backs of C*-algebras and crossed products by certain diagonalactions, Trans. Amer. Math. Soc, 287 (1985), 755-777.
  • [26] I. Raeburn and D. Williams, Crossedproducts by actions which are locallyunitary on the stabilizers, J. Funct. Anal., 81 (1988), 385-431.
  • [27] I. Raeburn and D. Williams, Moore cohonology, principal bundles, and actions of groups on C*-algebras, Indiana U. Math. J., 40 (1991), 707-740.
  • [28] I. Raeburn and D. Williams, Topological invariants associated with the spectrum of crossed product C* - algebras, J. Funct. Anal., 116 (1993), 245-276.
  • [29] J. Rosenberg, Homological invariants of extensions of C*-algebras, Operator Alge- bras and Applications (Kingston, Ont., 1980) (R.V. Kadison, ed.), Proc. Symp. Pure Math., vol. 38, part 1, Amer. Math. Soc, Providence, R.I., 1982, pp. 35-75.
  • [30] J. Rosenberg, Some results on cohomology with Borel cochains, with applications to group actions on operator algebras, Advances in invariant subspaces and other results of operator theory (Proceedings, Timioara and Herculane, Romania, 1984) (R.G. Douglas, CM. Pearcy, B.Sz.-Nagy, F.H. Vasilescu, and D. Voiculescu, eds.), Oper- ator Theory: Advances and Applications, vol. 17, Birkhauser, Basel, Boston, and Stuttgart, 1986, pp. 301-330.
  • [31] I.E. Schochetman, The topology of certain group extensions, Adv. in Math., 35 (1980), 113-128.
  • [32] A. Wassermann, Equivariant K-theory I: Compact transformation groups with one orbit type, Preprint, 1981.
  • [33] D. Williams, Transformation group C* -algebras with continuous trace, J. Funct. Anal., 41 (1981), 40-76.