Pacific Journal of Mathematics

Finite groups with a special $2$-generator property.

Tuval Foguel

Article information

Pacific J. Math., Volume 170, Number 2 (1995), 483-495.

First available in Project Euclid: 6 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 20D10: Solvable groups, theory of formations, Schunck classes, Fitting classes, $\pi$-length, ranks [See also 20F17]
Secondary: 20D06: Simple groups: alternating groups and groups of Lie type [See also 20Gxx] 20F05: Generators, relations, and presentations


Foguel, Tuval. Finite groups with a special $2$-generator property. Pacific J. Math. 170 (1995), no. 2, 483--495.

Export citation


  • [1] L.B.Beasly andJ.L. Brenner, Two-generator groupsIV,Congressus Numeratium, 53 (1986), 95-112.
  • [2] N.Bourbaki, Groupeset AlgebresdeLie, IV, V, VI, Hermann,Paris1968.
  • [3] J.L.Brenner andJames Wiegold, Two-generator groupsI,Michigan Math. J.,22 (1975), 53-64.
  • [4] Roger W. Carter. Simple groupsof Lie type, Wiley-Interscience Publishers,New York,1989.
  • [5] J.H.Conway, R.T.Curtis, S.P.Norton, R.A. Parker andR.A. Wilson, Atlas of Finite Groups, Oxford University Press, Oxford, New York, Toronto, 1985.
  • [6] Martin J.Evans, A note on two-generator groups, Rocky Mountain Journal ofMath- ematics, 17No.4 (1987), 887-889.
  • [7] Tuval Foguel, Finite Groups with aSpecial 2-generator property, and Order of Cen- tralizers inFinite Groups, Thesis, University of Illinois atUrbana-Champaign, 1992.
  • [8] Daniel Gorenstein, Finite Simple Groups, AnIntroduction to their Classification, Plenum Press, New York and London, 1982.
  • [9] I.N. Herstein, Topics in Algebra, Wiley Publisher, New York, 1975.
  • [10] James E. Humphreys, Introduction to Lie algebras andRepresentation Theory, Springer Verlag, Berlin, Heidelberg, New York, 1987.
  • [11] Michio Suzuki, Group Theory I, Springer-Verlag, Berlin, Heidelberg, New York, 1982.