Pacific Journal of Mathematics

Tangential deformations on the dual of nilpotent special Lie algebras.

N. Ben Amar

Article information

Source
Pacific J. Math., Volume 170, Number 2 (1995), 297-318.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102370873

Mathematical Reviews number (MathSciNet)
MR1363867

Zentralblatt MATH identifier
0847.17018

Subjects
Primary: 17B30: Solvable, nilpotent (super)algebras
Secondary: 22E25: Nilpotent and solvable Lie groups 58F06

Citation

Ben Amar, N. Tangential deformations on the dual of nilpotent special Lie algebras. Pacific J. Math. 170 (1995), no. 2, 297--318. https://projecteuclid.org/euclid.pjm/1102370873


Export citation

References

  • [1] D.Arnal, and J.C.Cortet, - product in the method of orbits for nilpotent groups, J. Geom. Phys., 2 (1985), 83-116.
  • [2] D.Arnal, M.Cahen, and S.Gutt, Deformation on coadjoint orbits, J. Geom. Phys., 3 (1986), 327-351.
  • [3] D.Arnal, * - product and representationsof nilpotentgroups, Pacific J. Math., 114 (2) (1984), 285-308.
  • [4] D.Arnal, and J.C.Cortet, NilpotentFouriertransformand applications, Lett. math, phys., 9 (1985), 25-34.
  • [5] D.Arnal, J.C.Cortet, P.Molin, and G.Pinczon, Covarianceand geometricalinari- ance in -quantization, J. Math. Phys., 24 (2) (1983), 276-283.
  • [6] F.Bayen, M.Flato, C.Fronsdal, A.Lichnerowicz, and D.Sternheimer, Deformation theory and quantization, I, II, Ann. of Phys., I l l (1978), 61-151.
  • [7] L.Corwin, and F.P.Greenleaf, Fourier transforms of smoothfunctions on certain nilpotent groups, J. Funct. Anal., 37 (1980), 203-217.
  • [8] R.Godement, Introductiona la theorie des groupesde Lie, Tome 2, Publ. math. Univ. Paris VII.
  • [9] S.Gutt, An explicit-producton the cotangentbundleof a Lie group, Lett. Math. Phys., 7 (1983), 249-258.
  • [10] R.Howe, G.Ratcliff, and N.Wildberger, Symbol mappings for certainnilpotent groups, Springer Lect. Notes in Math., Vol 1077.
  • [11] A.Lichnerowicz, Deformations and quantization, Geom. and Phys., (1983), 103-116.
  • [12] A.Lichnerowicz, Varietede Poisson et feuilletage,Ann. Fac. Sci. Toulouse, (1982), 195-262.
  • [13] V.Lugo, An associative algebraof functions on the orbits of nilpotent Liegroups, Lett. Math. Phys., 5 (1981), 509-516.
  • [14] W.Magnus, F.Oberbettinger, and R.P.Soni, Formulas and theorems for special func- tions of mathematical physics, Springer-Verlag Berlin, Heidelberg, New York (1966).
  • [15] L.Pukanszky, Lecons sur les representations des groupes, Dunod Paris, (1967).
  • [16] M.A.Rieffel, Lie group convolution algebras as deformation quantizations of linear Poisson structures, Amer. J. Math., 112 (1990), 657-686.
  • [17] M.A.Rieffel, Deformation quantization of Heisenberg manifolds, Comm.Math. Phys., 122 (1989), 531-562.
  • [18] M.A.Rieffel, Continuous fields of C*-algebras coming from group cocycles and ac- tions, Math. Ann., 283 (1989), 631-643.
  • [19] M.Vergne, La structure de Poisson sur Vagebre symetrique d}une algebre de Lie nilpotente, Bull. Soc. Math. Prance, 100 (1972), 301-335.