Pacific Journal of Mathematics

Generalized fixed-point algebras of certain actions on crossed products.

Beatriz Abadie

Article information

Pacific J. Math., Volume 171, Number 1 (1995), 1-21.

First available in Project Euclid: 6 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46L55: Noncommutative dynamical systems [See also 28Dxx, 37Kxx, 37Lxx, 54H20]
Secondary: 22D25: $C^*$-algebras and $W^*$-algebras in relation to group representations [See also 46Lxx] 46L80: $K$-theory and operator algebras (including cyclic theory) [See also 18F25, 19Kxx, 46M20, 55Rxx, 58J22]


Abadie, Beatriz. Generalized fixed-point algebras of certain actions on crossed products. Pacific J. Math. 171 (1995), no. 1, 1--21.

Export citation


  • [Ab] B. Abadie, "Vector bundles" over quantum Heisenberg manifolds. Algebraic Meth- ods in Operator Theory. Edited by R. Curto and P. Jorgensen, Birkhauser, 1994.
  • [AP] J. Anderson and W. Paschke, The rotation algebra. M.S.R.I. Preprint 041111-85 (1985).
  • [Bl] B. Blackadar, K-Theory of operator algebras. MSRI Publications, 5, Springer- Verlag, (1986).
  • [BGR] G. Brown, P. Green and M.Rieffel, Stable isomorphism andstrong Morita equiva- lence of C*-algebras. Pac. J. of Math., 71 (1977), 349-363.
  • [Pd] G. Pedersen, C*-algebras and their automorphism groups. Academic Press,Lon- don/New York/San Francisco (1979).
  • [PR] J.A. Packer andI. Raeburn, Twisted crossed products of C*-algebras. Math. Proc. Camb. Phil. Soc. 106, (1989), 293-311.
  • [Ph] N.C.Phillips, Equiariant K-theory for proper actions. Pitman Research Notes Math., 178 (1988).
  • [Rfl] M.Rieffel, Unitary representationsofgroupextensions; an algebraic approach tothe theory of Mackey andBlattner. Studies in Analysis. Adv. Math. Supp. Studies, 4 (1979),43-82.
  • [Rf2] Morita equivalence for operator algebras. Proc. Symp. Pure Math., 38, Amer. Math. Soc, (1982) 285-298.
  • [Rf3] Applications of strong Morita equivalenceto transformation C*-algebras. Proc. Symp. Pure Math., 38 (1982), part I, 299-310.
  • [Rf4] Proper actions of groups on C*-algebras.Mappings of operator algebras, Proc. Japan-USjoint seminar, Birkhauser (1990) 141-182.
  • [Rf5] Deformation Quantization of Heisenberg manifolds. Commun. Math. Phys., 122 (1989), 531-562.
  • [Ro] Rosenberg, J. K-theory of group C*-algebras, foliation C*~algebras, and crossed products. Index theory of elliptic operators, foliations, andoperator algebras. Con- temp. Math, 70, AMS,Providence R.I. (1988).