Pacific Journal of Mathematics

The Godbillon-Vey cyclic cocycle and longitudinal Dirac operators.

Hitoshi Moriyoshi and Toshikazu Natsume

Article information

Source
Pacific J. Math., Volume 172, Number 2 (1996), 483-539.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102366021

Mathematical Reviews number (MathSciNet)
MR1386629

Zentralblatt MATH identifier
0852.58077

Subjects
Primary: 58G12
Secondary: 46L80: $K$-theory and operator algebras (including cyclic theory) [See also 18F25, 19Kxx, 46M20, 55Rxx, 58J22] 57R30: Foliations; geometric theory

Citation

Moriyoshi, Hitoshi; Natsume, Toshikazu. The Godbillon-Vey cyclic cocycle and longitudinal Dirac operators. Pacific J. Math. 172 (1996), no. 2, 483--539. https://projecteuclid.org/euclid.pjm/1102366021


Export citation

References

  • [1] M.F. Atiyah, Elliptic operators, discretegroups andvon Neumann algebras, Asteri- sque, 32/33 (1976), 43-72.
  • [2] P.Baum andA. Connes, GeometricK-theoryfor Liegroups andfoliations, preprint, Brown U.-I.H.E.S., 1982.
  • [3] P.Baum andA. Connes, Chern character for discretegroups,A Fete of Topology (Editors: Y.Mat- sumoto, T. Mizutani, and S. Morita) , Academic Press, 1987, 163-232.
  • [4] B. Blackadar, K-theory for operatoralgebras, Mathematical Sciences ResearchIn- stitute Publications: 5, Springer-Verlag, 1986.
  • [5] R. Bott, On some formula for characteristicclasses of group actions, Differential Topology, Foliations and Gefand-Fuks cohomology, Riode Janeiro, Lecture Notes in Math., 652, Springer-Verlag,1979, 19-143.
  • [6] A.,Connes, Sur la theorie noncommutativede Vintegration, Algebras d'Operateurs, Lecture Notes in Math., 725, Springer-Verlag, 1979, 19-143.
  • [7] A., Non commutative differentialgeometry,Parts I andII, Inst. Hautes Etudes Sci. Publ. Math., 62 (1986),257-360.
  • [8] A., Cyclic cohomology and transverse fundamental class of a foliation, Geo- metric Methods in Operator Algebras (Editors: H. Araki and E.G. Efros), Pitman Research Notes in Math. Series, 123 (1986), Longman Scientific and Technical, 52-144.
  • [9] A. Connes and H. Moscovici, Cyclic cohomology,the Noviko conjecture and hyper- bolic group, Topology, 29 (1990), 345-388.
  • [10] A. Connes and G. Skandalis, The longitudinal index theorem for foliations, Publ. Research Inst. Math. Sci., Kyoto Univ., 20 (1984), 1139-1183.
  • [11] R. Douglas, S. Hurder and J. Kaminker, The longitudinal cocycle and the index of Toeplitz operators,preprint, I.U.-P.U.I., 1988.
  • [12] E. Getzler, Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem, Comm. Math. Phys., 92 (1983), 163-178.
  • [13] C. Godbillon and J. Vey, Un invariant des feuilletage de codimension 1, C.R. Acad. Sci. Paris, 273 (1971), 92-95.
  • [14] M. Hilsum and G. Skandalis, Stabilite des C* -algebres de feuilletages, Ann. Inst. Fourier, Grenoble, 33 (1983), 202-208.
  • [15] C.C. Moore and C. Schochet, GlobalAnalysis on Foliated Spaces, Math. Sci. Res. Inst. Publ., vol 9, Springer-Verlag, 1988.
  • [16] T. Natsume, Euler characteristic and the class of unit in K-theory, Math. Z., 194 (1987), 237-243.
  • [17] M. Pimsner, KK-groups of crossed products by groups acting on trees, Invent. Math., 86 (1986), 603-634.
  • [18] J. Renault, A groupoid approach to C*-algebras,Lecture Notes in Math., 793, Springer-Verlag, 1980.
  • [19] M.A. Rieffel, Projective modules over higher dimensional non-commutative tori, Canadian J. Math., 40 (1988), 257-338.
  • [20] J. Roe, Finite propagation speed and Connes foliation algebra,Proc. Camb. Phil. Soc, 102 (1987), 459-466.
  • [21] J. Roe, Partitioning non-compact manifolds and the dual Toeplitz problem, Opera- tor Algebras and Applications (Editors: D.E. Evans and M. Takesaki), Cambridge Univ. Press, 1989, 187-228.
  • [22] M. Taylor, Pseudodifferential operators,Princeton Univ. Press, Princeton, 1981.