Pacific Journal of Mathematics

Factorization problems in the invertible group of a homogeneous $C^*$-algebra.

N. Christopher Phillips

Article information

Source
Pacific J. Math., Volume 174, Number 1 (1996), 215-246.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102365366

Mathematical Reviews number (MathSciNet)
MR1398376

Zentralblatt MATH identifier
0866.46035

Subjects
Primary: 46L35: Classifications of $C^*$-algebras
Secondary: 46L05: General theory of $C^*$-algebras

Citation

Phillips, N. Christopher. Factorization problems in the invertible group of a homogeneous $C^*$-algebra. Pacific J. Math. 174 (1996), no. 1, 215--246. https://projecteuclid.org/euclid.pjm/1102365366


Export citation

References

  • [1] R. Bhatia, Perturbation Bounds for Matrix Eigenvalues, Pitman Research Notes in Math. no. 162, Longman Scientific and Technical, Harlow, Britain, 1987.
  • [2] B. Blackadar, K-Theory for Operator Algebras,MSRI publications no. 5, Springer- Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, 1986.
  • [3] A. Calder and J. Siegel, On the width of homotopies, Topology, 19 (1980), 209-220.
  • [4] P. de la Harpe and G. Skandalis, Produits finis de commutateurs dans les C*- algebres, Ann. Inst. Fourier (Grenoble), 34, no. 4 (1984), 169-202.
  • [5] R. K. Dennis and L. N. Vaserstein, On a question of M. Newman on the number of commutators, J. Algebra, 118 (1988), 150-161.
  • [6] R. Engelking, Dimension Theory, North-Holland, Amsterdam, Oxford, New York, 1978.
  • [7] P. A. Fillmore, Notes on Operator Theory, Van Nostrand Reinhold, New York, Cincinnati, Toronto, London, Melbourne, 1970.
  • [8] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, New York, Toronto, London, Melbourne, 1967.
  • [9] T. Kato, Perturbation Theory for Linear Operators (2nd corrected printing of the 2nd ed.), Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.
  • [10] M. Khalkhali, C. Laurie, B. Mathes, and H. Radjavi, Approximation by products of positive operators,J. Operator Theory, 29 (1993), 237-247.
  • [11] N. C. Phillips, Simple C*-algebras with the property weak (FU), Math. Scand., 69 (1991), 127-151.
  • [12] N. C. Phillips, Approximation by unitaries with finite spectrum in purely infinite C*- algebras, J. Functional Analysis, 120 (1994), 98-106.
  • [13] N. C. Phillips, How many exponentials?, Amer. J. Math., 116 (1994), 1513-1543.
  • [14] N. C. Phillips, The rectifiable metric on the space of projections in a C* -algebra,Interna- tional J. Math., 3 (1992), 679-698.
  • [15] N. C. Phillips, The C* projectie length of n-homogeneous C* -algebras,J. Operator The- ory, 31 (1994),253-276.
  • [16] N. C. Phillips, A survey of exponential rank,C* -Algebras: 1943-1993,A Fifty YearCele- bration, Contemporary Math., Vol. 167, Amer. Math. Soc, Providence RI,1994, 353-399.
  • [17] N. C. Phillips, Every invertible Hilbertspace operator is a product of seven positive oper- ators, Canad. Math. Bulletin, 38 (1995), 230-236.
  • [18] N. C. Phillips and J. R. Ringrose, Exponential rank in operator algebras, Current Topics in Operator Algebras, H.Araki etc. (Eds.), World Scientific, Singapore,New Jersey, London, Hong Kong, 1991,395-413.
  • [19] T. Quinn, Factorization in C*-Algebras: Products of Positive Operators, Ph.D. Thesis, Dalhousie University, Halifax, 1992.
  • [20] T. Quinn, Products of decomposable positive operators, preprint.
  • [21] H. Radjavi, Products of Hermitian matrices and symmetries, Proc. Amer. Math. Soc, 21 (1969),369-372.
  • [22] M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras,Proc. London Math. Soc, (3) 46 (1983), 301-333.
  • [23] M. A. Rieffel, The homotopy groups of the unitary groups of noncommutative tori, J. Operator Theory, 17 (1987), 237-254.
  • [24] J. R. Ringrose, Exponential length and exponential rankin C*-algebras, Proc Royal Soc Edinburgh, Ser. A., 121 (1992), 55-71.
  • [25] A. R. Sourour, A factorization theorem for matrices, Linear Multilinear Alg., 19 (1986), 141-147.
  • [26] K. Thomsen, Finite sums and products of commutators in inductive limit C*- algebras,Ann. Inst. Fourier (Grenoble), 43, no.l (1993), 225-249.
  • [27] L. N. Vaserstein, Stablerankof rings and dimensionality of topologicalspaces,Funk- tsional. Anal, i Prilozhen, 5 no. 2 (1971), 17-27 (in Russian); English translation in Functional Anal. Appl., 5 (1971), 102-110.
  • [28] L. N. Vaserstein, Reduction of a matrix depending on parameters to a diagonal form by addition operation, Proc Amer. Math. Soc, 103 (1988), 741-746.
  • [29] P.Y. Wu, The operatorfactorization problems, Linear Alg. Appl., 117 (1989), 35-63.
  • [30] P.Y. Wu, Products of normal operators, Can. J. Math., 40 (1988), 1322-1330.