Pacific Journal of Mathematics

Harmonic analysis on compact polar homogeneous spaces.

Jing-Song Huang

Article information

Source
Pacific J. Math., Volume 175, Number 2 (1996), 553-569.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102353158

Mathematical Reviews number (MathSciNet)
MR1432845

Zentralblatt MATH identifier
0878.22005

Subjects
Primary: 43A85: Analysis on homogeneous spaces
Secondary: 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX] 53C35: Symmetric spaces [See also 32M15, 57T15]

Citation

Huang, Jing-Song. Harmonic analysis on compact polar homogeneous spaces. Pacific J. Math. 175 (1996), no. 2, 553--569. https://projecteuclid.org/euclid.pjm/1102353158


Export citation

References

  • [B] M. Brion, Classification des espaces homogenes spheriques, Compositio Mathemat- ica, 63 (1987), 189-208.
  • [D] J. Dadok, Polar coordinate induced by actions of compact Lie groups, Transactions of AMS, 288(1) (1985), 125-137.
  • [DK] J. Dadok and V. Kac, Polar representations, Journal of Algebra, 92(2) (1985), 504-524.
  • [FJ] M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Annal of Math., I l l (1980), 253-311.
  • [G] F. Gursey, Algebraic methods and quark structure, International Symposium on Mathematical Problems in Theoretical Physics, Kyoto, Japan, 23-29 Jan. 1975, (Springer-Verlag 1975), 189-195.
  • [HC] Harish-Chandra, Discrete series for semisimple Lie groups, I, II, Acta Math., 113 (1965), 241-318; 116 (1966), 1-111.
  • [HPTT] E. Heintze, R. Palais, C.-L. Terng and G. Thorbergsson, Hyperpolar actions and k-flat homogeneous spaces,preprint.
  • [Hel] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978.
  • [He2] S. Helgason, Groups and Geometric Analysis, Academic Press,1984.
  • [Hu] J.S.Huang, Plancherelformulae for non-symmetric polar spaces, to appear in Pa- cific. J. Math.
  • [KR] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, American J. of Math., 93 (1971), 753-809.
  • [Kl] M.Kramer, Eine Klassifikation bestimmter Untergruppen kompakterzusammenhn- gender Liegruppen, Communications in algebra, 3 (1975), 691-737.
  • [K2] M.Kramer, Sphrische Untergruppen in kompakten zusammenhngenden Liegruppen, Compositio Mathematica, 38 (1979), 129-153.
  • [OM] T. Oshima and T. Matsuki, A description of discrete series for semisimple symmet- ric spaces, Group Representations and Systems of Differential Equations, Advanced Studies in Pure Mathematics, 4 (1984), 331-390.
  • [PT] R. Palais and C.-L. Terng, A general theory of canonical forms, Transactions of AMS, 300 (1987), 771-789.
  • [R] W. Rossmann, Analysis on real hyperbolic spaces, Journal of Functional Analysisj 30 (1978), 448-477.