Pacific Journal of Mathematics

Banach algebras with unitary norms.

Mogens L. Hansen and Richard V. Kadison

Article information

Source
Pacific J. Math., Volume 175, Number 2 (1996), 535-552.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102353157

Mathematical Reviews number (MathSciNet)
MR1432844

Zentralblatt MATH identifier
0865.46040

Subjects
Primary: 46L05: General theory of $C^*$-algebras
Secondary: 46H20: Structure, classification of topological algebras 46K05: General theory of topological algebras with involution

Citation

Hansen, Mogens L.; Kadison, Richard V. Banach algebras with unitary norms. Pacific J. Math. 175 (1996), no. 2, 535--552. https://projecteuclid.org/euclid.pjm/1102353157


Export citation

References

  • [BRS] D.P. Blecher, Z.-J. Ruan and A.M. Sinclair, A Characterization of Operator Alge- bras, J. Funct. Anal., 89 (1990), 188-201.
  • [CE] M.-D. Choi and E.G. EfFros, Injectivity and Operator Spaces, J. Funct. Anal., 24 (1977), 156-209.
  • [D] J. Dixmier, Les moyennes invariantes dans les semi-groupes et leur applications, Acta Sci. Math. Szeged, 12 (1950), 213-227.
  • [ER] E. Effros and Z.-J. Ruan, On matriciallynormed spaces, Pacific J. Math., 132 (1988), 243-264.
  • [G] L.T. Gardner, An Elementary proof of the Russo-Dye Theorem, Proc. Amer. Math. Soc, 90 (1984), 171.
  • [H] U. Haagerup, On Convex Combinations of Unitary Operators in C*lgebras, Map- pings of Operator Algebras, Proceedings of the Japan-U. S. Joint Seminar, Univer- sity of Pennsylvania, 1988, 1-13 (eds. H. Araki and R. V. Kadison), Birkhauser, Boston, 1991, Progress in Mathematics, 84.
  • [K] R.V. Kadison, Isometriesof operator algebras, Ann. Math., 54 (1951), 325-338.
  • [KP] R.V. Kadison and G.K. Pedersen, Means and Convex Combinations ofUnitary Operators, Math. Scand., 57 (1987), 249-266.
  • [KR] R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Academic Press, Orlando, Florida, 1983, 1986, Pure and Applied Mathematics, 100, volumes III and IV containing solutions to all the exercises, Birkhauser, Boston, 1991, 1992.
  • [OP] C.L. Olsen and G.K. Pedersen, Convex Combinations of Unitary Operatorsin von Neumann Algebras, J. Funct. Anal., 66 (1986), 365-380.
  • [P] R.R. Phelps, Extreme Points in Function Algebras,Notices Amer. Math. Soc, 11 (1964), 538.
  • [Ru] Z.-J. Ruan, Subspacesof C*-algebras, J. Funct. Anal., 76 (1988), 217-230.
  • [RD] B. Russo and H.A. Dye, A Note on Unitary Operatorsin C*lgebras,Duke Math. J., 33 (1966), 413-416.