Pacific Journal of Mathematics

Stable constant mean curvature surfaces minimize area.

Karsten Grosse-Brauckmann

Article information

Source
Pacific J. Math., Volume 175, Number 2 (1996), 527-534.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102353156

Mathematical Reviews number (MathSciNet)
MR1432843

Zentralblatt MATH identifier
0878.49026

Subjects
Primary: 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42]
Secondary: 49Q05: Minimal surfaces [See also 53A10, 58E12] 49Q25 58E12: Applications to minimal surfaces (problems in two independent variables) [See also 49Q05]

Citation

Grosse-Brauckmann, Karsten. Stable constant mean curvature surfaces minimize area. Pacific J. Math. 175 (1996), no. 2, 527--534. https://projecteuclid.org/euclid.pjm/1102353156


Export citation

References

  • [BdC] J. Barbosa and M. do Carmo, Stability of hypersurfaces with constant mean curva- ture,Math. Z., 185 (1984), 339-353.
  • [BT] R. Bhme and F. Tomi, Zur Strukturder Lsungsmenge des Plateauproblems, Math. Z., 133 (1973), 1-29.
  • [F] R. Finn, Editor's note, to appear Pac. J.
  • [GT] D. Gilbarg and N.S.Trudinger, Ellipticpartial differential equationsof second order. Second edition, Springer, 1983.
  • [H] G. Hellwig, Partial differential equations.Second edition, Teubner, 1977.
  • [K] N. Kapouleas, Completeconstant meancurvature surfacesin Euclidean three-space, Ann. of Math., 131 (1990), 239-330.
  • [M] W.H. Meeks, The topologyand geometry of embedded surfaces of constantmean curvature,J. Diff. Geom., 27 (1988), 539-552.
  • [MY] W.H. Meeks and S.T. Yau, The existence of embeddedminimal surfaces and the problem of uniqueness,Math. Z., 179 (1982), 131-168.
  • [N] J.C.C. Nitsche, Lectures on minimal surfaces I, Cambridge University Press, 1989.
  • [R] W. Rossman, Thesis, Univ. of Mass., 1992.
  • [W] H. Wente, Stability for the axially symmetric pendent drop, Preprint, MPI Bonn, 1987.
  • [Wh] B. White, A strong minimax property of nondegenerate minimal submanifolds, J. Reine Ang. Math., 457 (1994), 203-218.