Pacific Journal of Mathematics

On the symmetric square. Unit elements.

Yuval Z. Flicker

Article information

Pacific J. Math., Volume 175, Number 2 (1996), 507-526.

First available in Project Euclid: 6 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11F70: Representation-theoretic methods; automorphic representations over local and global fields
Secondary: 11R39: Langlands-Weil conjectures, nonabelian class field theory [See also 11Fxx, 22E55]


Flicker, Yuval Z. On the symmetric square. Unit elements. Pacific J. Math. 175 (1996), no. 2, 507--526.

Export citation


  • [B] J. Bernstein, P-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (non-archimedean case), in Lie Groups Representations II, SLN 1041 (1984), 50-102.
  • [BDK] J. Bernstein, P. Deligne, and D. Kazhdan, Trace Paley- Wiener theorem for reductive p-adic groups, J. Analyse Math., 47 (1986), 180-192.
  • [BZ] J. Bernstein and A. Zelevinskii, Representations of the group GL(n, F) where F is a nonarchimedean local field, Russian Math. Surveys, 31 (1976), 1-68.
  • [Bo] A. Borel, Linear Algebraic Groups, GTM 126, Springer-Verlag, New-York (1991).
  • [Fl] Y. Flicker, On the symmetric square. Orbital integrals, Math Annalen, 279 (1987), 173-191.
  • [F2] Y. Flicker, On the symmetric square. Applications of a trace formula, Trans. Amer. Math. Soc, 330 (1992), 125-152.
  • [F3] Y. Flicker, On the symmetric square. Total global comparison, J. Funct. Anal., 22 (1994), 255-278.
  • [F4] Y. Flicker, On endo-lifting, Compositio Math., 67 (1988), 271-300.
  • [F5] Y. Flicker, Automorphic forms on covering groups ofGL(2), Invent. Math., 57 (1980), 119-182.
  • [F6] Y. Flicker, Report on the fundamental lemma for GL(4) and GSp(2); Automorphic forms on algebraic groups, (1996), RIMS, Kyoto.
  • [FK] Y. Flicker and D. Kazhdan, Metaplectic correspondence, Publ. Math. IHES., 64 (1986), 53-110.
  • [H] T. Hales, Unipotent representations and unipotent classes in SL(n), Amer. J. Math., (1994).
  • [HC] Harish-Chandra, notes by G. van Dijk, Harmonic Analysis on Reductive p-adic Groups, Lecture Notes in Mathematics 162, Springer-Verlag, New-York (1970).
  • [K] D. Kazhdan, On lifting, in Lie groups representations II, Lecture Notes in Mathe- matics, Springer-Verlag, New-York, 1041 (1984), 209-249.
  • [KP] D. Kazhdan and S.J. Patterson, Towards a generalized Shimura correspondence, Adv. in Math., 60 (1986), 161-234.
  • [R] R. Rao, Orbital integrals in reductive groups, Ann. of Math., 96 (1972), 505-510.
  • [Ri] R. Richardson, Conjugacy classes in Lie algebras and algebraic groups, Annales. of Math., 86 (1967), 1-15.
  • [S] J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics 5, Springer- Verlag, New-York (1965).
  • [Sh] J. Shalika, A theorem on semi-simple p-adic groups, Ann. of Math., 95 (1972), 226-242.
  • [SS] T. Springer and R. Steinberg, Conjugacy classes, in Seminar on AlgebraicGroups and Related Finite Groups, Lecture Notes in Mathematics 131,Springer-Verlag, New-York (1970).
  • [V] M.-F.Vigneras, Caracterisation des intgrales orbitales sur un groupe reductifp- adique,J. fac. sci. univ. Tokyo, 28 (1982), 945-961.
  • [Wl] J.-L. Waldspurger, Homogeneite de certaines distributions sur les groupes p-adiques, preprint (1993).
  • [W2] J.-L. Waldspurger, Sur les integrales orbitales tordues pour les groupes lineaires: unlemme fondamental, Canad. J. Math., 43 (1991), 852-896.