Pacific Journal of Mathematics

On spectra of simple random walks on one-relator groups.With an appendix by Paul Jolissaint

Pierre-Alain Cherix and Alain Valette

Article information

Source
Pacific J. Math., Volume 175, Number 2 (1996), 417-438.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102353151

Mathematical Reviews number (MathSciNet)
MR1432838

Zentralblatt MATH identifier
0865.60059

Subjects
Primary: 43A05: Measures on groups and semigroups, etc.
Secondary: 20F05: Generators, relations, and presentations 60B15: Probability measures on groups or semigroups, Fourier transforms, factorization 60J15

Citation

Cherix, Pierre-Alain; Valette, Alain. On spectra of simple random walks on one-relator groups. Pacific J. Math. 175 (1996), no. 2, 417--438. https://projecteuclid.org/euclid.pjm/1102353151


Export citation

References

  • [AkO] C.A. Akemann and P.A. Ostrand, Computing norms in group C*-algebras, Amer. J. Math., 98 (1976), 1015-1047.
  • [Car] D.I. Cartwright, Singularities of the Greenfunction of a random walk on adiscrete group,Mh. Math., 113 (1992), 183-188.
  • [CSl] D.I. Cartwright and P.M. Soardi, Harmonic analysis on the free product of two cyclic groups,J. Funct. Anal., 65 (1986), 147-171.
  • [CS2] D.I. Cartwright and P.M. Soardi, Random walk on free products, quotients and amalgams,Nagoya Math. J., 102 (1986), 163-180.
  • [Chi] C. Champetier, Cocroissance des groupes a petite simplification, Bull. London Math. Soc, 25 (1993), 438-444.
  • [Ch2] C. Champetier, Proprietes statistiques des groupes de presentation finie, Adv. in Maths., 116 (1995), 197-262.
  • [Day] M.M. Day, Convolutions, means and spectra,Illinois J. Math., 8 (1964), 100-111.
  • [GhH] E. Ghys and P. de la Harpe eds., Sur les groupeshyperboliques d'apres M. Gromov, Progress in Maths., 83, Birkhauser, 1990.
  • [Gri] R.I. Grigorchuk, Symmetrical random walkson discretegroups,in "Multicomponent random systems", Nauk, Moscow, 1978.
  • [Gro] M. Gromov, Hyperbolic groups, in "Essays in Group Theory", ed. S.M. Gersten, M.S.R.I. Publ., 8, Springer, 1987, 75-263.
  • [Haa] U. Haagerup, An example of a non nuclearC*-algebra whichhas the metricapprox- imation property, Inventiones Mathematicae, 50 (1979), 279-293.
  • [HRVl] P. de la Harpe, A.G. Robertson and A. Valette, On the spectrum of the sum of generatorsfor a finitely generatedgroup,Israel J. of Maths., 81 (1993), 65-96.
  • [HRV2] P. de la Harpe, On the spectrum of the sum of generatorsfor a finitely generatedgroupII, Colloquium Math., LXV (1993), 87-102.
  • [IoP] A. Iozzi and M.A. Picardello, Sphericalfunctions on symmetric graphs,in Confer- ence in Harmonic Analysis, Lecture Notes in Math., 992, Springer (1983), 87-104.
  • [Jol] P. Jolissaint, Rapidly decreasing functions in reduced C* -algebrasof groups,Trans- actions of Amer. Math. Soc, 317 (1990), 167-196.
  • [Juh] A. Juhasz, On the hyperbolicity and non- hyperbolicity of one-relator groups I, preprint, Haifa Technion, 1993.
  • [Kas] G.G. Kasparov, Lorentz groups: K-theory of unitary representations andcrossed products, Dokl. Akad. Nauk SSSR, 275 (1984), 541-545 (in Russian).
  • [Kel] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc, 92 (1959), 336-354.
  • [Ke2] H. Kesten, Full Banach mean values on countable groups, Math. Scand., 7 (1959), 146-156.
  • [KeS] H. Kesten and F. Spitzer, Random walk on countably infinite abeliangroups,Acta. Math., 114 (1965), 237-265.
  • [KuS] G. Kuhn and P.M. Soardi, The Plancherelmeasurefor polygonalgraphs,Ann. Mat. Pura AppL, 134 (1983), 393-401.
  • [Lyn] R.C. Lyndon, Cohomology theory of groups with a single defining relation, Ann, of Math., 52 (1950), 650-665.
  • [LyS] R.C. Lyndon and P.E. Schupp, Combinatorialgroup theory, Ergebnisse der Math.,
  • [Mlo] W. Mlotkowski, Positive definitefunctions onfree products of groups, Boll.Un. Mat. ItaL, 3-B(1989), 343-355.
  • [Moh] B. Mohar, Some relations between analytic and geometric properties ofinfinite graphs,Discrete Maths., 95 (1991),193-219.
  • [New] B.B. Newman, Some results on one-relatorgroups, Bull. Amer. Math. Soc,74 (1968), 568-571.
  • [Pas] W.L. Paschke, Lower boundfor thenorm of a vertex-transitive graph, Math. Z., 213 (1993),225-239.
  • [Ro] J. Rosenberg, C* -algebras, positive scalar curvature andtheNovikov conjecture, Publ. Math. IHES, 58 (1983), 197-212.
  • [Ser] J.-P.Serre, Arbres, amalgames,SL2,Asterisque, 46, Soc. Math. Prance, 1977.
  • [She] A.Shenitzer, Decompositionof a group with a single defining relation into a free product,Proc. Amer. Math. Soc, 6 (1955),273-279.
  • [Sta] J.R. Stallings, Groups of dimension 1 are locally free, Bull. Amer. Math. Soc, 74 (1968),361-364.
  • [Str] R.Strebel, Small cancellationgroups,Appendix of[GhH], pp. 227-273.
  • [Val] A.Valette, The conjectureof idempotents: a survey of the C*-algebraic approach, Bull. Soc. Math. Belgique, XLI(1989), 485-521.
  • [Woe] W.Woess, A short computation of the norms offree convolution operators,Proc. Amer. Math. Soc, 96 (1986), 167-170.