Pacific Journal of Mathematics

Haar measure on $E_q(2)$.

Arupkumar Pal

Article information

Source
Pacific J. Math., Volume 176, Number 1 (1996), 217-233.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102352059

Mathematical Reviews number (MathSciNet)
MR1433990

Zentralblatt MATH identifier
0865.43001

Subjects
Primary: 46L50
Secondary: 46L89: Other "noncommutative" mathematics based on C-algebra theory [See also 58B32, 58B34, 58J22] 58B30 81R50: Quantum groups and related algebraic methods [See also 16T20, 17B37]

Citation

Pal, Arupkumar. Haar measure on $E_q(2)$. Pacific J. Math. 176 (1996), no. 1, 217--233. https://projecteuclid.org/euclid.pjm/1102352059


Export citation

References

  • [1] S.Baaj, Representation Reguliere du groupe quantique des deplacements de Worono- wicz,Asterisque, 232 (1995), 11-49.
  • [2] E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, Three-dimensional Quantum Groups from Contractions of SU(2)q, J. Math. Phys., 31(11) (1990), 2548-2551.
  • [3] G.K. Pedersen, C*-algebras and Their Automorphism Groups, Academic Press, 1979.
  • [4] G.K. Pedersen and M. Takesaki, The Radon-Nikodym Theorem for Von Neumann Algebras, Acta Mathematica, 130 (1973), 53-87.
  • [5] S.L.Woronowicz, UnboundedElements Affiliated With C*-algebras and Noncompact Quantum Groups,Comm. Math. Phys., 136 (1991), 399-432.
  • [6] S.L.Woronowicz, Quantum E(2) Group and its Pontryagin Dual, Lett. Math. Phys., 23 (1991), 251-263.
  • [7] S.L.Woronowicz, Quantum SU{2) and E(2) Groups - Contraction Procedure,Comm. Math. Phys., 149 (1992), 637-652.