Pacific Journal of Mathematics

Plancherel formulae for non-symmetric polar homogeneous spaces.

Jing-Song Huang

Article information

Source
Pacific J. Math., Volume 176, Number 2 (1996), 345-356.

Dates
First available in Project Euclid: 1 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102104967

Mathematical Reviews number (MathSciNet)
MR1434995

Zentralblatt MATH identifier
0882.43013

Subjects
Primary: 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX]
Secondary: 43A85: Analysis on homogeneous spaces

Citation

Huang, Jing-Song. Plancherel formulae for non-symmetric polar homogeneous spaces. Pacific J. Math. 176 (1996), no. 2, 345--356. https://projecteuclid.org/euclid.pjm/1102104967


Export citation

References

  • [D] J. Dadok, Polar coordinate induced by actions of compact Lie groups, Trans. Amer. Math. Soc,288(1) (1985), 125-137.
  • [FJ] M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Annal of Math., I l l (1980), 253-311.
  • [HC] Harish-Chandra, Discrete series for semisimple Lie groups,I, II, Acta Math., 113 (1965), 241-318; 116 (1966), 1-111.
  • [HPTT] E. Heintze, R. Palais, C.-L. Terng and G. Thorbergsson, Hyperpolar actions and k-flat homogeneousspaces, J. reine angew. Math., 454 (1994), 163-179.
  • [H] J.S. Huang, Harmonic analysis on compactpolar homogeneousspaces, to appear in Pacific Journal of Mathematics.
  • [K] T. Kobayashi, Discrete decomposition of the restriction of Aq() with respect to reductivesubgroupsand its applications, Invent. Math., 117 (1994), 181-205.
  • [OM] T. Oshima and T. Matsuki, A description of discreteseries for semisimplesymmet- ric spaces, Group Representations and Systems of Differential Equations, Advanced Studies in Pure Mathematics, 4 (1984), 331-390.
  • [OS] T. Oshima and S. Sekiguchi, Eigenspacesof Invariant Differential Operatorson an Ajfine Symmetric Space,Inv. Math., 57 (1980), 1-81.
  • [PT] R. Palais and C.-L. Terng, A general theory of canonicalforms, Trans, of Amer. Math. Soc, 300 (1987), 771-789.
  • [R] W. Rossmann, Analysis on realhyperbolic spaces,J. Funct. Anal., 30 (1978), 448- 477.
  • [W] N. Wallach, Real Reductive Groups, Volume I, II, Academic Press 1988, 1992.