Proceedings of the Japan Academy, Series A, Mathematical Sciences

Weierstrass points on hyperelliptic modular curves

Daeyeol Jeon

Full-text: Open access

Abstract

In this paper, we find all Weierstrass points on the hyperelliptic modular curves $X_{0}(N)$ whose hyperelliptic involutions are non-exceptional, i.e., induced by matrices in $\mathrm{GL}_{2}(\mathbf{R})$.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 95, Number 7 (2019), 65-69.

Dates
First available in Project Euclid: 24 July 2019

Permanent link to this document
https://projecteuclid.org/euclid.pja/1563955329

Digital Object Identifier
doi:10.3792/pjaa.95.65

Mathematical Reviews number (MathSciNet)
MR3983314

Subjects
Primary: 14H55: Riemann surfaces; Weierstrass points; gap sequences [See also 30Fxx]
Secondary: 11G18: Arithmetic aspects of modular and Shimura varieties [See also 14G35]

Keywords
Weierstrass points modular curve hyperelliptic curve

Citation

Jeon, Daeyeol. Weierstrass points on hyperelliptic modular curves. Proc. Japan Acad. Ser. A Math. Sci. 95 (2019), no. 7, 65--69. doi:10.3792/pjaa.95.65. https://projecteuclid.org/euclid.pja/1563955329


Export citation

References

  • A. O. L. Atkin, Weierstrass points at cusps $\Gamma_{o}(n)$, Ann. of Math. (2) 85 (1967), 42–45.
  • S. Choi, A Weierstrass point of $\Gamma_{1}(4p)$, J. Chungcheong Math. Soc. 21 (2008), no. 4, 467–470.
  • C. Delaunay, Critical and ramification points of the modular parametrization of an elliptic curve, J. Théor. Nombres Bordeaux 17 (2005), no. 1, 109–124.
  • B. Gross, W. Kohnen and D. Zagier, Heegner points and derivatives of $L$-series, II, Math. Ann. 278 (1987), no. 1–4, 497–562.
  • D. Jeon, Weierstrass points on hyperelliptic modular curves, Commun. Korean Math. Soc. 30 (2015), no. 4, 379–384.
  • D. Jeon, C. H. Kim and A. Schweizer, Bielliptic intermediate modular curves, J. Pure Appl. Algebra (2019), https://doi.org/10.1016/j.jpaa.2019.05.007.
  • K. Kilger, Weierstrass points on $X_0(pl)$ and arithmetic properties of Fourier coefficients of cusp forms, Ramanujan J. 17 (2008), no. 3, 321–330.
  • W. Kohnen, Weierstrass points at cusps on special modular curves, Abh. Math. Sem. Univ. Hamburg 73 (2003), 241–251.
  • W. Kohnen, A short remark on Weierstrass points at infinity on $X_0(N)$, Monatsh. Math. 143 (2004), no. 2, 163–167.
  • J. Lehner and M. Newman, Weierstrass points of $\Gamma_{0}\,(n)$, Ann. of Math. (2) 79 (1964), 360–368.
  • K. Matthews, BCMATH programs for binary quadratic forms and quadratic fields: negative discriminants, http://www.numbertheory.org/php/classnoneg.html.
  • J.-F. Mestre, Corps euclidiens, unités exceptionnelles et courbes élliptiques, J. Number Theory 13 (1981), no. 2, 123–137.
  • A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449–462.
  • A. P. Ogg, On the Weierstrass points of $X_{0}(N)$, Illinois J. Math. 22 (1978), no. 1, 31–35.
  • K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and $q$-series, CBMS Regional Conference Series in Mathematics, 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2004.
  • D. E. Rohrlich, Weierstrass points and modular forms, Illinois J. Math. 29 (1985), no. 1, 134–141.
  • B. Schöneberg, Über die Weierstrasspunkte in den örpern der elliptischen Modulfunktionen, Abh. Math. Sem. Univ. Hamburg 17 (1951), 104–111.