Proceedings of the Japan Academy, Series A, Mathematical Sciences
- Proc. Japan Acad. Ser. A Math. Sci.
- Volume 94, Number 4 (2018), 36-41.
Inequalities for free multi-braid arrangements
Abstract
Abe, Nuida, and Numata (2009) describe a large class of free multiplicities on the braid arrangement arising from signed-eliminable graphs. On a large cone in the multiplicity lattice, we prove that these are the only free multiplicities on the braid arrangement. We also give a conjecture on the structure of all free multiplicities on the braid arrangement.
Article information
Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 94, Number 4 (2018), 36-41.
Dates
First available in Project Euclid: 5 April 2018
Permanent link to this document
https://projecteuclid.org/euclid.pja/1522915218
Digital Object Identifier
doi:10.3792/pjaa.94.36
Mathematical Reviews number (MathSciNet)
MR3783544
Zentralblatt MATH identifier
06929332
Subjects
Primary: 13N15: Derivations
Secondary: 05E40: Combinatorial aspects of commutative algebra 14N20: Configurations and arrangements of linear subspaces
Keywords
Freeness of multi-arrangements braid arrangement multi-derivations
Citation
DiPasquale, Michael Robert. Inequalities for free multi-braid arrangements. Proc. Japan Acad. Ser. A Math. Sci. 94 (2018), no. 4, 36--41. doi:10.3792/pjaa.94.36. https://projecteuclid.org/euclid.pja/1522915218