Proceedings of the Japan Academy, Series A, Mathematical Sciences

Remarks on the abundance conjecture

Kenta Hashizume

Full-text: Open access


We prove the abundance theorem for log canonical $n$-folds such that the boundary divisor is big assuming the abundance conjecture for log canonical $(n-1)$-folds. We also discuss the log minimal model program for log canonical 4-folds.

Article information

Proc. Japan Acad. Ser. A Math. Sci., Volume 92, Number 9 (2016), 101-106.

First available in Project Euclid: 2 November 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14E30: Minimal model program (Mori theory, extremal rays)
Secondary: 14J35: $4$-folds

Abundance theorem big boundary divisor good minimal model finite generation of adjoint ring


Hashizume, Kenta. Remarks on the abundance conjecture. Proc. Japan Acad. Ser. A Math. Sci. 92 (2016), no. 9, 101--106. doi:10.3792/pjaa.92.101.

Export citation


  • F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry, 220–239; translation in Proc. Steklov Inst. Math. 240 (2003), no. 1, 214–233.
  • C. Birkar, Ascending chain condition for log canonical thresholds and termination of log flips, Duke Math. J. 136 (2007), no. 1, 173–180.
  • C. Birkar, On existence of log minimal models, Compos. Math. 146 (2010), no. 4, 919–928.
  • C. Birkar, Existence of log canonical flips and a special LMMP, Publ. Math. Inst. Hautes Études Sci. (2012), 325–368.
  • C. Birkar, P. Cascini, C. D. Hacon and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468.
  • A. Corti, Adjunction of log divisors, in Flips and abundance for algebraic threefolds, Astérisque 211, Soc. Math. France, Paris, 1992, pp. 171–182.
  • O. Fujino, Abundance theorem for semi log canonical threefolds, Duke Math. J. 102 (2000), no. 3, 513–532.
  • O. Fujino, Finite generation of the log canonical ring in dimension four, Kyoto J. Math. 50 (2010), no. 4, 671–684.
  • O. Fujino, Introduction to the theory of quasi-log varieties, in Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 289–303.
  • O. Fujino, Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci. 47 (2011), no. 3, 727–789.
  • O. Fujino, Foundation of the minimal model program, 2014/4/16 version 0.01. (Preprint).
  • O. Fujino and Y. Gongyo, Log pluricanonical representations and the abundance conjecture, Compos. Math. 150 (2014), no. 4, 593–620.
  • C. D. Hacon and C. Xu, Existence of log canonical closures, Invent. Math. 192 (2013), no. 1, 161–195.
  • C. D. Hacon and C. Xu, On finiteness of B-representation and semi-log canonical abundance, in Minimal models and external rays (Kyoto, 2011), 361–378, Adv. Stud. Pure Math, 70, Math. Soc. Japan, Tokyo, 2016.
  • K. Hashizume, Finite generation of adjoint ring for log surfaces. (to appear in J. Math. Sci. Univ. Tokyo).
  • Y. Kawamata, Flops connect minimal models, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 419–423.
  • Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, in Algebraic geometry, (Sendai, 1985), 283–360, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987.
  • S. Keel, K. Matsuki and J. McKernan, Log abundance theorem for threefolds, Duke Math. J. 75 (1994), no. 1, 99–119.
  • J. Kollár, Adjunction and discrepancies, in Flips and abundance for algebraic threefolds, Astérisque 211, Soc. Math. France, Paris, 1992, pp. 183–192.
  • J. Kollár and S. J. Kovács, Log canonical singularities are Du Bois, J. Amer. Math. Soc. 23 (2010), no. 3, 791–813.
  • J. Kollár and S. Mori, Birational geometry of algebraic varieties, translated from the 1998 Japanese original, Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, Cambridge, 1998.
  • V. V. Shokurov, Three-dimensional log perestroikas. (Russian) With an appendix in English by Yujiro Kawamata. Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 1, 105–203; translation in Russian Acad. Sci. Izv. Math. 40 (1993), no. 1, 95–202.
  • V. V. Shokurov, 3-fold log models, J. Math. Sci. 81 (1996), no. 3, 2667–2699.