Proceedings of the Japan Academy, Series A, Mathematical Sciences

Resurgence of formal series solutions of nonlinear differential and difference equations

Shingo Kamimoto

Full-text: Open access

Abstract

We discuss the resurgence of formal series solutions of nonlinear differential and difference equations of level 1. We derive an estimate for iterated convolution products. We describe the possible location of the singularities of their Borel transforms.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci. Volume 92, Number 8 (2016), 92-95.

Dates
First available in Project Euclid: 3 October 2016

Permanent link to this document
https://projecteuclid.org/euclid.pja/1475499414

Digital Object Identifier
doi:10.3792/pjaa.92.92

Mathematical Reviews number (MathSciNet)
MR3554862

Zentralblatt MATH identifier
1354.34143

Subjects
Primary: 34M30: Asymptotics, summation methods 34M25: Formal solutions, transform techniques 34M40: Stokes phenomena and connection problems (linear and nonlinear)

Keywords
Resurgent function Borel resummation method iterated convolution

Citation

Kamimoto, Shingo. Resurgence of formal series solutions of nonlinear differential and difference equations. Proc. Japan Acad. Ser. A Math. Sci. 92 (2016), no. 8, 92--95. doi:10.3792/pjaa.92.92. https://projecteuclid.org/euclid.pja/1475499414


Export citation

References

  • B. Braaksma and R. Kuik, Resurgence relations for classes of differential and difference equations, Ann. Fac. Sci. Toulouse Math. (6) 13 (2004), no. 4, 479–492.
  • B. Braaksma and R. Kuik, Asymptotics and singularities for a class of difference equations, in Analyzable functions and applications, Contemp. Math., 373, Amer. Math. Soc., Providence, RI, 2005, pp. 113–135.
  • B. Candelpergher, J.-C. Nosmas and F. Pham, Approche de la résurgence, Actualités Mathématiques., Hermann, Paris, 1993.
  • O. Costin, On Borel summation and Stokes phenomena for rank-1 nonlinear systems of ordinary differential equations, Duke Math. J. 93 (1998), no. 2, 289–344.
  • J. Écalle, Les fonctions résurgentes. Tome I, Publications Mathématiques d'Orsay, 81, 5, Univ. Paris XI, Département de Mathématiques, Orsay, 1981.
  • J. Écalle, Les fonctions résurgentes. Tome II, Publications Mathématiques d'Orsay, 81, 6, Univ. Paris XI, Département de Mathématiques, Orsay, 1981.
  • J. Écalle, Les fonctions résurgentes. Tome III, Publications Mathématiques d'Orsay, 85, 5, Univ. Paris XI, Département de Mathématiques, Orsay, 1985.
  • J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités Mathématiques., Hermann, Paris, 1992.
  • S. Kamimoto and D. Sauzin, Nonlinear analysis with endlessly continuable functions, RIMS Kôkyûroku Bessatsu, B57 (2016), 235–247.
  • S. Kamimoto, Iterated convolution of resurgent functions. (in preparation).
  • R. Kuik, Transseries in difference and differential equations, 2003, Doctoral Thesis (University of Groningen).
  • Y. Ou and E. Delabaere, Endless continuability and convolution product, arXiv:1410.1200.
  • D. Sauzin, On the stability under convolution of resurgent functions, Funkcial. Ekvac. 56 (2013), no. 3, 397–413.
  • D. Sauzin, Nonlinear analysis with resurgent functions, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 3, 667–702.