Proceedings of the Japan Academy, Series A, Mathematical Sciences

A characterization of the $L^{\infty}$-representation algebra $\mathfrak{R}(S)$ of a foundation semigroup and its application to BSE algebras

Zeinab Kamali

Full-text: Open access

Abstract

For a locally compact Hausdorff semigroup $S$, the $L^{\infty}$-representation algebra $\mathfrak{R}(S)$ was extensively studied by Dunkl and Ramirez. In this paper we give a characterization of the Banach algebra $\mathfrak{R}(S)$ of a foundation semigroup $S$ and as an application we determine some BSE semigroup algerbras.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 92, Number 5 (2016), 59-63.

Dates
First available in Project Euclid: 28 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.pja/1461868541

Digital Object Identifier
doi:10.3792/pjaa.92.59

Mathematical Reviews number (MathSciNet)
MR3492813

Zentralblatt MATH identifier
1376.46038

Subjects
Primary: 46Jxx: Commutative Banach algebras and commutative topological algebras [See also 46E25]
Secondary: 22A20: Analysis on topological semigroups

Keywords
Representation algebra BSE algebra foundation semigroup reflexive semigroup

Citation

Kamali, Zeinab. A characterization of the $L^{\infty}$-representation algebra $\mathfrak{R}(S)$ of a foundation semigroup and its application to BSE algebras. Proc. Japan Acad. Ser. A Math. Sci. 92 (2016), no. 5, 59--63. doi:10.3792/pjaa.92.59. https://projecteuclid.org/euclid.pja/1461868541


Export citation

References

  • C. W. Austin, Duality theorems for some commutative semigroups, Trans. Amer. Math. Soc. 109 (1963), 245–256.
  • A. C. Baker and J. W. Baker, Duality of topological semigroups with involution, J. London Math. Soc. 44 (1969), 251–260.
  • S. Bochner, A theorem on Fourier-Stieltjes integrals, Bull. Amer. Math. Soc. 40 (1934), no. 4, 271–276.
  • C. F. Dunkl and D. E. Ramirez, Representations of commutative semitopological semigroups, Lecture Notes in Mathematics, 435, Springer, Berlin, 1975.
  • H. A. M. Dzinotyiweyi, The analogue of the group algebra for topological semigroups, Research Notes in Mathematics, 98, Pitman, Boston, MA, 1984.
  • W. F. Eberlein, Characterizations of Fourier-Stieltjes transforms, Duke Math. J. 22 (1955), 465–468.
  • Z. Kamali and M. Lashkarizadeh Bami, Bochner-Schoenberg-Eberlein property for abstract Segal algebras, Proc. Japan Acad. Ser. A Math. Sci. 89 (2013), no. 9, 107–110.
  • Z. Kamali and M. Lashkarizadeh Bami, The multiplier algebra and BSE property of the direct sum of Banach algebras, Bull. Aust. Math. Soc. 88 (2013), no. 2, 250–258.
  • Z. Kamali and M. Lashkarizadeh Bami, The Bochner-Schoenberg-Eberlein property for $L^{1}(\mathbf{R}^{+})$, J. Fourier Anal. Appl. 20 (2014), no. 2, 225–233.
  • E. Kaniuth and A. Ülger, The Bochner-Schoenberg-Eberlein property for commutative Banach algebras, especially Fourier and Fourier-Stieltjes algebras, Trans. Amer. Math. Soc. 362 (2010), no. 8, 4331–4356.
  • R. Larsen, An introduction to the theory of multipliers, Springer, New York, 1971.
  • M. Lashkarizadeh Bami, The $L^{\infty}$-representation algebra of a foundation topological semigroup, Manuscripta Math. 77 (1992), no. 2–3, 161–167.
  • W. Rudin, Fourier analysis on groups, reprint of the 1962 original, Wiley Classics Library, Wiley, New York, 1990.
  • I. J. Schoenberg, A remark on the preceding note by Bochner, Bull. Amer. Math. Soc. 40 (1934), no. 4, 277–278.
  • G. L. G. Sleijpen, Convolution measure algebras on semigroups, (1976). (Ph. D. Thesis, Dep. Math., Catholic University, Nijmegen, Netherland).
  • S. Takahasi and O. Hatori, Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein type-theorem, Proc. Amer. Math. Soc. 110 (1990), no. 1, 149–158.
  • S. Takahasi and O. Hatori, Commutative Banach algebras and BSE-inequalities, Math. Japon. 37 (1992), no. 4, 607–614.
  • J. L. Taylor, Measure algebras, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 16, Providence, RI, 1973.