Proceedings of the Japan Academy, Series A, Mathematical Sciences

Derivatives of meromorphic functions and sine function

Pai Yang, Xiaojun Liu, and Xuecheng Pang

Full-text: Open access


In the paper, we take up a new method to prove the following result. Let $f$ be a meromorphic function in the complex plane, all of whose zeros have multiplicity at least $k+1$ ($k\geq 2$) and all of whose poles are multiple. If $T(r,\sin z)=o\{T(r,f(z))\}$ as $n\rightarrow\infty$, then $f^{(k)}(z)-\sin z$ has infinitely many zeros.

Article information

Proc. Japan Acad. Ser. A Math. Sci., Volume 91, Number 9 (2015), 129-134.

First available in Project Euclid: 29 October 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 30D35: Distribution of values, Nevanlinna theory 30D45: Bloch functions, normal functions, normal families

Meromorphic function normal familiy sine function


Yang, Pai; Liu, Xiaojun; Pang, Xuecheng. Derivatives of meromorphic functions and sine function. Proc. Japan Acad. Ser. A Math. Sci. 91 (2015), no. 9, 129--134. doi:10.3792/pjaa.91.129.

Export citation


  • W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959), no. 1, 9–42.
  • X. Pang, S. Nevo and L. Zalcman, Derivatives of meromorphic functions with multiple zeros and rational functions, Comput. Methods Funct. Theory 8 (2008), no. 1–2, 483–491.
  • X. Liu, S. Nevo and X. Pang, On the $k$th derivative of meromorphic functions with zeros of multiplicity at least $k+1$, J. Math. Anal. Appl. 348 (2008), no. 1, 516–529.
  • Q. Chen, X. Pang and P. Yang, A new Picard type theorem concerning elliptic functions, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 1, 17–30.
  • X. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000), no. 3, 325–331.
  • S. Nevo, On theorems of Yang and Schwick, Complex Variables Theory Appl. 46 (2001), no. 4, 315–321.
  • L. Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 3, 215–230.
  • S. Nevo, Applications of Zalcman's lemma to $Q_{m}$-normal families, Analysis (Munich) 21 (2001), no. 3, 289–325.
  • S. Nevo, X. Pang and L. Zalcman, Quasinormality and meromorphic functions with multiple zeros, J. Anal. Math. 101 (2007), Issue 1, 1–23.
  • G. Zhang, X. Pang and L. Zalcman, Normal families and omitted functions. II, Bull. Lond. Math. Soc. 41 (2009), no. 1, 63–71.
  • M. Tsuji, On Borel's directions of meromorphic functions of finite order. II, Kōdai Math. Sem. Rep. 2 (1950), nos. 4–5, 96–100.
  • J. K. Langley, The second derivative of a meromorphic function of finite order, Bull. London Math. Soc. 35 (2003), no. 1, 97–108.