Proceedings of the Japan Academy, Series A, Mathematical Sciences

Invariants of varieties and singularities inspired by Kähler-Einstein problems

Yuji Odaka

Full-text: Open access

Abstract

We extend the framework of K-stability~[30],~[8] to a more general algebro-geometric setting, such as partial desingularisations of fixed singularities, (not necessarily flat) families over higher dimensional base and birational geometry of surfaces.

We also observe that “concavity” of the volume function implies decrease of the (generalised) Donaldson–Futaki invariants along the Minimal Model Program, in our generalised settings. Several related results on the connection with the MMP theory, some of which are new even in the original setting of families over curves, are also proved.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 91, Number 4 (2015), 50-55.

Dates
First available in Project Euclid: 31 March 2015

Permanent link to this document
https://projecteuclid.org/euclid.pja/1427806770

Digital Object Identifier
doi:10.3792/pjaa.91.50

Mathematical Reviews number (MathSciNet)
MR3327328

Zentralblatt MATH identifier
1338.14016

Subjects
Primary: 14E30: Minimal model program (Mori theory, extremal rays)
Secondary: 14B05: Singularities [See also 14E15, 14H20, 14J17, 32Sxx, 58Kxx] 32Q15: Kähler manifolds

Keywords
Intersection number Minimal Model Program K-stability

Citation

Odaka, Yuji. Invariants of varieties and singularities inspired by Kähler-Einstein problems. Proc. Japan Acad. Ser. A Math. Sci. 91 (2015), no. 4, 50--55. doi:10.3792/pjaa.91.50. https://projecteuclid.org/euclid.pja/1427806770


Export citation

References

  • T. Aubin, Réduction du cas positif de l'équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration dúne inégalité, J. Funct. Anal. 57 (1984), no. 2, 143–153.
  • C. Birkar, P. Cascini, C. Hacon and J. Mckernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468.
  • R. Berman, S. Boucksom, V. Guedj and A. Zeriahi, A variational approach to complex Monge-Ampère equations, Publ. Math. IHES 117 (2013) 179–245.
  • S. Boucksom, T. de Fernex and C. Favre, The volume of an isolated singularity, Duke Math. J. 161 (2012), no. 8, 1455–1520.
  • S. Boucksom, C. Favre and M. Jonsson, Singular semipositive metrics in non-Archimedian geometry, arXiv:1201.0187.
  • S. Boucksom, C. Favre and M. Jonsson, Solution to a non-Archimedean Monge-Ampère equation, arXiv:1201.0188.
  • P. Cascini and G. La Nave, Kähler-Ricci Flow and the Minimal Model Program for Projective Varieties..
  • S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289–349.
  • S. K. Donaldson, Kähler metrics with cone singularities along a divisor, arXiv:1102.1196.
  • J. Fine and J. Ross, A note on positivity of the CM line bundle, Int. Math. Res. Not. 2006, Art. ID 95875, 14 pp.
  • O. Fujino, Semi-stable minimal model program for varieties with trivial canonical divisor, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), no. 3, 25–30.
  • M. Fulger, Local volumes on normal algebraic varieties, arXiv:1105.2981.
  • A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), no. 3, 437–443.
  • A.-S. Kaloghiros, Relations in the Sarkisov program, Compos. Math. 149 (2013), no. 10, 1685–1709.
  • J. Kollár, Projectivity of complete moduli, J. Differential Geom. 32 (1990), no. 1, 235–268.
  • J. Kollár and S. Mori, Birational geometry of algebraic varieties, Japanese original, Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, Cambridge, 1998.
  • M. Kontsevich and Y. Soibelman, Affine structures and non-Archimedean analytic spaces, in The unity of mathematics, Progr. Math., 244, Birkhäuser, Boston, 2006, pp. 321–385.
  • M. Kontsevich and Y. Tschinkel, Non-archimedian Kähler geometry, unfinished manuscript. {http://www.ihes.fr/~maxim/TEXTS/Non-archimedean\
  • C. Li and C. Xu, Special test configuration and K-stability of Fano varieties, Ann. of Math. (2) 180 (2014), no. 1, 197–232.
  • T. Mabuchi, $K$-energy maps integrating Futaki invariants, Tohoku Math. J. (2) 38 (1986), no. 4, 575–593.
  • Y. Odaka, The GIT stability of polarized varieties via discrepancy, Ann. of Math. (2) 177 (2013), no. 2, 645–661.
  • Y. Odaka, A generalization of the Ross-Thomas slope theory, Osaka J. Math. 50 (2013), no. 1, 171–185.
  • Y. Odaka, On the moduli of Kähler-Einstein Fano manifolds, in Kinosaki symposium (Kinosaki, 2013), Proceeding of Kinosaki symposium, arXiv:1211.4833.
  • Y. Odaka and S. Sun, Testing log K-stability by blowing up formalism, arXiv:1112.1353.
  • Y. Odaka and C. Xu, Log-canonical models of singular pairs and its applications, Math. Res. Lett. 19 (2012), no. 2, 325–334.
  • S. Paul and G. Tian, CM Stability and the Generalized Futaki Invariant I..
  • J. Ross and R. Thomas, A study of the Hilbert-Mumford criterion for the stability of projective varieties, J. Algebraic Geom. 16 (2007), no. 2, 201–255.
  • V. V. Shokurov, Prelimiting flips, Tr. Mat. Inst. Steklova 240 (2003), Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry, 82–219; translation in Proc. Steklov Inst. Math. 2003, no. 1 (240), 75–213.
  • J. Song and G. Tian, Kähler-Ricci ows through singularities, arXiv:0909.4898.
  • G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37.
  • X. Wang, Height and GIT weight, Math. Res. Lett. 19 (2012), no. 4, 909–926.
  • X. Wang and C. Xu, Nonexistence of asymptotic GIT compactification, Duke Math. J. 163 (2014), no. 12, 2217–2241.
  • S. T. Yau, Problem section, in Seminar on Differential Geometry, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 669–706.
  • Y. Zhang, On the volume of isolated singularities, Compos. Math. 150 (2014), no. 8, 1413–1424.