Proceedings of the Japan Academy, Series A, Mathematical Sciences

Symmetric pairs with finite-multiplicity property for branching laws of admissible representations

Toshiyuki Kobayashi

Full-text: Open access

Abstract

We accomplish the classification of the reductive symmetric pairs $(G,H)$ for which the dimension of the space $\mathrm{Hom}_{H}(\pi|_{H}, \tau)$ of $H$-intertwining operators is finite for any irreducible smooth representation $\pi$ of $G$ and for any irreducible smooth representation $\tau$ of $H$.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 90, Number 6 (2014), 79-83.

Dates
First available in Project Euclid: 30 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.pja/1401455141

Digital Object Identifier
doi:10.3792/pjaa.90.79

Mathematical Reviews number (MathSciNet)
MR3216026

Zentralblatt MATH identifier
1304.22012

Subjects
Primary: 22E46: Semisimple Lie groups and their representations
Secondary: 14M15: Grassmannians, Schubert varieties, flag manifolds [See also 32M10, 51M35] 53C35: Symmetric spaces [See also 32M15, 57T15]

Keywords
Branching law restriction of representation reductive group real spherical variety symmetric pair

Citation

Kobayashi, Toshiyuki. Symmetric pairs with finite-multiplicity property for branching laws of admissible representations. Proc. Japan Acad. Ser. A Math. Sci. 90 (2014), no. 6, 79--83. doi:10.3792/pjaa.90.79. https://projecteuclid.org/euclid.pja/1401455141


Export citation

References

  • E. P. van den Ban, Invariant differential operators on a semisimple symmetric space and finite multiplicities in a Plancherel formula, Ark. Mat. 25 (1987), no. 2, 175–187.
  • J.-L. Clerc, T. Kobayashi, B. Ørsted and M. Pevzner, Generalized Bernstein–Reznikov integrals, Math. Ann. 349 (2011), no. 2, 395–431.
  • B. H. Gross and D. Prasad, On the decomposition of a representation of SO$_{n}$ when restricted to SO$_{n-1}$, Canad. J. Math. 44 (1992), no. 5, 974–1002.
  • Harish-Chandra, Representations of semisimple Lie groups on a Banch space, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 170–173.
  • R. Howe, $\theta$-series and invariant theory, in Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, 275–285, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979.
  • B. Kimelfeld, Homogeneous domains on flag manifolds, J. Math. Anal. Appl. 121 (1987), no. 2, 506–588.
  • T. Kobayashi, Discrete decomposability of the restriction of $A_{\mathfrak{q}}(\lambda)$ with respect to reductive subgroups and its applications, Invent. Math. 117 (1994), no. 2, 181–205.
  • T. Kobayashi, Introduction to harmonic analysis on real spherical homogeneous spaces, in Proceedings of 3rd Summer School on Number Theory “Homogeneous Spaces and Automorphic Forms”, (F. Sato, ed.) (Rikkyo University, January 1995 and Yamagata-mura in Nagano, July 1995), 22–41, 1995. (in Japanese).
  • T. Kobayashi, Discrete decomposability of the restriction of $A_{\mathfrak{q}}(\lambda)$ with respect to reductive subgroups. II. Micro-local analysis and asymptotic $K$-support, Ann. of Math. (2) 147 (1998), no. 3, 709–729.
  • T. Kobayashi, Discrete decomposability of the restriction of $A_{\mathfrak{q}}(\lambda)$ with respect to reductive subgroups. III. Restriction of Harish-Chandra modules and associated varieties, Invent. Math. 131 (1998), no. 2, 229–256.
  • T. Kobayashi, Branching problems of Zuckerman derived functor modules, in Representation theory and mathematical physics, Contemp. Math., 557, Amer. Math. Soc., Providence, RI, 2011, pp. 23–40.
  • T. Kobayashi, F-method for symmetry breaking operators, Differential Geom. Appl. 33 (2014), suppl., 272–289.
  • T. Kobayashi, Shintani functions, real spherical manifolds, and symmetry breaking operators, arXiv:1401.0117. (to appear in Progr. Math.).
  • T. Kobayashi and T. Matsuki, Classification of finite-multiplicity symmetric pairs, Transform. Groups 19 (2014), no. 2, 457–493.
  • T. Kobayashi and T. Oshima, Finite multiplicity theorems for induction and restriction, Adv. Math. 248 (2013), 921–944.
  • T. Kobayashi and Y. Oshima, Classification of discretely decomposable $A_{\mathfrak{q}}(\lambda)$ with respect to reductive symmetric pairs, Adv. Math. 231 (2012), no. 3–4, 2013–2047.
  • T. Kobayashi and Y. Oshima, Classification of symmetric pairs with discretely decomposable restrictions of ($\mathfrak{g},K$)-modules, Crelles Journal, published on line 2013 July 13, doi:10.1515/crelle-2013-0045.
  • T. Kobayashi and B. Speh, Intertwining operators and the restriction of representations of rank-one orthogonal groups, C. R. Math. Acad. Sci. Paris 352 (2014), no. 2, 89–94.
  • M. Krämer, Multiplicity free subgroups of compact connected Lie groups, Arch. Math. (Basel) 27 (1976), no. 1, 28–36.
  • T. Matsuki, Orbits on flag manifolds, in Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 807–813, Math. Soc. Japan, Tokyo, 1990.
  • B. Sun and C.-B. Zhu, Multiplicity one theorems: the Archimedean case, Ann. of Math. (2) 175 (2012), no. 1, 23–44.
  • N. R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, 132, Academic Press, Boston, MA, 1988.