Proceedings of the Japan Academy, Series A, Mathematical Sciences

Differential Harnack inequality for the nonlinear heat equations

Liang Zhao

Full-text: Open access

Abstract

In this paper, we establish some differential Harnack inequalities for positive solutions to the nonlinear heat equations with potentials evolving by the Bernhard List’s flow. Our theorems generalize Cao and Zhang’s results [1].

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 89, Number 8 (2013), 96-99.

Dates
First available in Project Euclid: 17 October 2013

Permanent link to this document
https://projecteuclid.org/euclid.pja/1382016180

Digital Object Identifier
doi:10.3792/pjaa.89.96

Mathematical Reviews number (MathSciNet)
MR3127924

Zentralblatt MATH identifier
1287.53062

Subjects
Primary: 53C44: Geometric evolution equations (mean curvature flow, Ricci flow, etc.)

Keywords
Differential Harnack inequality Bernhard List’s flow gradient estimate

Citation

Zhao, Liang. Differential Harnack inequality for the nonlinear heat equations. Proc. Japan Acad. Ser. A Math. Sci. 89 (2013), no. 8, 96--99. doi:10.3792/pjaa.89.96. https://projecteuclid.org/euclid.pja/1382016180


Export citation

References

  • X. Cao and Z. Zhang, Differential Harnack estimates for parabolic equations, in Complex and differential geometry, Springer Proc. Math., 8, Springer, Heidelberg, 2011, pp. 87–98.
  • H.-D. Cao and L. Ni, Matrix Li-Yau-Hamilton estimates for the heat equation on Kähler manifolds, Math. Ann. 331 (2005), no. 4, 795–807.
  • X. Cao, Differential Harnack estimates for backward heat equations with potentials under the Ricci flow, J. Funct. Anal. 255 (2008), no. 4, 1024–1038.
  • S. Fang, Differential Harnack inequalities for heat equations with potentials under the Bernhard List's flow, Geom. Dedicata 161 (2012), 11–22.
  • S. Kuang and Q. S. Zhang, A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, J. Funct. Anal. 255 (2008), no. 4, 1008–1023.
  • P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3–4, 153–201.
  • B. List, Evolution of an extended Ricci flow system, Comm. Anal. Geom. 16 (2008), no. 5, 1007–1048.
  • S. Liu, Gradient estimates for solutions of the heat equation under Ricci flow, Pacific J. Math. 243 (2009), no. 1, 165–180.
  • S.-T. Yau, On the Harnack inequalities of partial differential equations, Comm. Anal. Geom. 2 (1994), no. 3, 431–450.