Proceedings of the Japan Academy, Series A, Mathematical Sciences

Moduli of log mixed Hodge structures

Kazuya Kato, Chikara Nakayama, and Sampei Usui

Full-text: Open access

Abstract

We announce the construction of toroidal partial compactifications of the moduli spaces of mixed Hodge structures with polarized graded quotients. They are moduli spaces of log mixed Hodge structures with polarized graded quotients. We include an application to the analyticity of zero loci of normal functions.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 86, Number 7 (2010), 107-112.

Dates
First available in Project Euclid: 21 July 2010

Permanent link to this document
https://projecteuclid.org/euclid.pja/1279719310

Digital Object Identifier
doi:10.3792/pjaa.86.107

Mathematical Reviews number (MathSciNet)
MR2657330

Zentralblatt MATH identifier
1209.14008

Subjects
Primary: 14C30: Transcendental methods, Hodge theory [See also 14D07, 32G20, 32J25, 32S35], Hodge conjecture
Secondary: 14D07: Variation of Hodge structures [See also 32G20] 32G20: Period matrices, variation of Hodge structure; degenerations [See also 14D05, 14D07, 14K30]

Keywords
Hodge theory log geometry Griffiths domain toroidal compactification log mixed Hodge structure admissible normal function

Citation

Kato, Kazuya; Nakayama, Chikara; Usui, Sampei. Moduli of log mixed Hodge structures. Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), no. 7, 107--112. doi:10.3792/pjaa.86.107. https://projecteuclid.org/euclid.pja/1279719310


Export citation

References

  • A. Borel, Introduction aux groupes arithmétiques, Hermann, Paris, 1969.
  • P. Brosnan and G. J. Pearlstein, Zero loci of admissible normal functions with torsion singularities, arXiv:0803.3365.
  • P. Brosnan and G. J. Pearlstein, On the algebraicity of the zero locus of an admissible normal function, arXiv:0910.0628.
  • E. Cattani, A. Kaplan and W. Schmid, Degeneration of Hodge structures, Ann. of Math. (2) 123 (1986), no. 3, 457–535.
  • P. Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. No. 52 (1980), 137–252.
  • P. A. Griffiths, Periods of integrals on algebraic manifolds, I. Construction and properties of the modular varieties, Amer. J. Math. 90 (1968), 568–626.
  • M. Kashiwara, A study of variation of mixed Hodge structure, Publ. Res. Inst. Math. Sci. 22 (1986), no. 5, 991–1024.
  • K. Kato, Logarithmic structures of Fontaine-Illusie, in Algebraic analysis, geometry, and number theory (J.-I. Igusa, ed.), (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, (1989), 191–224.
  • K. Kato and C. Nakayama, Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over $\mathbf{C}$, Kodai Math. J. 22 (1999), no. 2, 161–186.
  • K. Kato, C. Nakayama and S. Usui, $\mathop{\mathrm{SL}}(2)$-orbit theorem for degeneration of mixed Hodge structure, J. Algebraic Geom. 17 (2008), no. 3, 401–479.
  • K. Kato, C. Nakayama and S. Usui, Log intermediate Jacobians, Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), 73–78.
  • K. Kato, C. Nakayama and S. Usui, Classifying spaces of degenerating mixed Hodge structures, II: Spaces of $\mathop{\mathrm{SL}}(2)$-orbits. (Preprint).
  • K. Kato, C. Nakayama and S. Usui, Classifying spaces of degenerating mixed Hodge structures, III: Spaces of nilpotent orbits. (in preparation).
  • K. Kato and S. Usui, Classifying spaces of degenerating polarized Hodge structures, Ann. of Math. Stud., 169, Princeton Univ. Press, Princeton, NJ, 2009.
  • M. Saito, Hausdorff property of the Néron models of Green, Griffiths and Kerr, arXiv:0803.2771.
  • C. Schnell, Complex analytic Néron models for arbitrary families of intermediate Jacobians, arXiv:0910.0662.
  • J. H. M. Steenbrink and S. Zucker, Variation of mixed Hodge structure. I, Invent. Math. 80 (1985), no. 3, 489–542.
  • S. Usui, Variation of mixed Hodge structure arising from family of logarithmic deformations II: Classifying space, Duke Math. J. 51 (1984), no. 4, 851–875.