Proceedings of the Japan Academy, Series A, Mathematical Sciences

Polynomal-size Frege proofs of Bollobás’ theorem on the trace of sets

Toshiyasu Arai, Noriko H. Arai, and Akihiro Nozaki

Full-text: Open access

Abstract

In this note we show that Bollobás’ theorem on the trace of sets has polynomial-size Frege proofs.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 84, Number 8 (2008), 159-161.

Dates
First available in Project Euclid: 6 October 2008

Permanent link to this document
https://projecteuclid.org/euclid.pja/1223299526

Digital Object Identifier
doi:10.3792/pjaa.84.159

Mathematical Reviews number (MathSciNet)
MR2457806

Zentralblatt MATH identifier
1157.03034

Subjects
Primary: 03F20: Complexity of proofs
Secondary: 05D05: Extremal set theory

Keywords
Lengths of proofs Frege system trace of sets

Citation

Nozaki, Akihiro; Arai, Toshiyasu; Arai, Noriko H. Polynomal-size Frege proofs of Bollobás’ theorem on the trace of sets. Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), no. 8, 159--161. doi:10.3792/pjaa.84.159. https://projecteuclid.org/euclid.pja/1223299526


Export citation

References

  • T. Arai, A bounded arithmetic AID for Frege systems, Ann. Pure Appl. Logic 103 (2000), nos. 1–3, 155–199.
  • M. L. Bonet, S. R. Buss and T. Pitassi, Are there hard examples for Frege systems?, in Feasible mathematics, II (Ithaca, NY, 1992), 30–56, Birkhäuser, Boston, Boston, MA, 1994.
  • P. Frankl, On the trace of finite sets, J. Combin. Theory Ser. A 34 (1983), no. 1, 41–45.
  • P. Frankl, Extremal set systems, in Handbook of combinatorics, Vol. 1, 2, 1293–1329, Elsevier, Amsterdam, 1995.
  • L. Lovász, Combinatorial problems and exercises, North-Holland, Amsterdam, 1979.