Proceedings of the Japan Academy, Series A, Mathematical Sciences

On theta correspondences for Eisenstein series

Shinji Niwa

Full-text: Open access

Abstract

There are three types of parabolic subgroups in $Sp(2,\mathbf{R})$. In this paper we show that the Eisenstein series with respect to the Siegel parabolic subgroup corresponds to the Eisenstein series with respect to the Jacobi parabolic subgroup by theta correspondences.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 83, Number 9-10 (2007), 161-166.

Dates
First available in Project Euclid: 22 January 2008

Permanent link to this document
https://projecteuclid.org/euclid.pja/1201012598

Digital Object Identifier
doi:10.3792/pjaa.83.161

Mathematical Reviews number (MathSciNet)
MR2376597

Zentralblatt MATH identifier
1206.11056

Subjects
Primary: 11F27: Theta series; Weil representation; theta correspondences 11F37: Forms of half-integer weight; nonholomorphic modular forms 11F46: Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms

Keywords
Siegel modular theta correspondence Eisenstein series

Citation

Niwa, Shinji. On theta correspondences for Eisenstein series. Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 9-10, 161--166. doi:10.3792/pjaa.83.161. https://projecteuclid.org/euclid.pja/1201012598


Export citation

References

  • A. N. Andrianov and G. N. Maloletkin, Behavior of theta-series of genus $n$ of indefinite quadratic forms under modular substitutions. Proc. Steklov Inst. Math. 148 (1980), no. 4, 1–12.
  • B. Diehl, Die analytische Fortsetzung der Eisensteinreihe zur Siegelschen Modulgruppe, J. Reine Angew. Math. 317 (1980), 40–73.
  • G. Kaufhold, Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktion 2. Grades, Math. Ann. 137 (1959), 454–476.
  • W. Kohnen and N.-P. Skoruppa, A certain Dirichlet series attached to Siegel modular forms of degree two, Invent. Math. 95 (1989), no. 3, 541–558.
  • C. Mœglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge Univ. Press, Cambridge, 1995.