Proceedings of the Japan Academy

An estimate from above for the entropy and the topological entropy of a $C^1$-diffeomorphism

Shunji Ito

Full-text: Open access

Article information

Proc. Japan Acad., Volume 46, Number 3 (1970), 226-230.

First available in Project Euclid: 20 November 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 28.70
Secondary: 54.00


Ito, Shunji. An estimate from above for the entropy and the topological entropy of a $C^1$-diffeomorphism. Proc. Japan Acad. 46 (1970), no. 3, 226--230. doi:10.3792/pja/1195520395.

Export citation


  • [1] R. Adler, A. Konheim, and M. McAndrew: Topological entropy. Trans. Amer. Math. Soc, 144, 309-319 (1965).
  • [2] A. Avez: Ergodic Theory of Dynamical Systems. VI. Lecture Note. Univ. of Minesota (1966).
  • [3] L. Goodwyn: Topological entropy bounds measure theoretic entropy. Preprint, Univ. of Kentucky (to appear).
  • [4] S. Ito: On the topological entropy of a dynamical system. Proc. Japan Acad., 45, 838-840 (1969).
  • [5] A. Kolmogorov and V. Tihomirov: s-entropy and e-capacity of sets in functional spaces. Amer. Math. Soc. Translations, 17(2) (1961).
  • [6] A. G. Kuchnirenko: An estimate from above for the entropy of a classical system. Sov. Math. Dokl., 6, No. 2, 360-362 (1965).
  • [7] V. Rohlint Lectures on the entropy theory of measure-preserving transformations. Russian Math. Surveys, 22 (5), 1-52 (1967).