Proceedings of the Japan Academy, Series A, Mathematical Sciences

An approximate positive part of essentially self-adjoint pseudo-differential operators, II

Daisuke Fujiwara

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 57, Number 3 (1981), 147-150.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195516487

Digital Object Identifier
doi:10.3792/pjaa.57.147

Mathematical Reviews number (MathSciNet)
MR618079

Zentralblatt MATH identifier
0524.35101

Subjects
Primary: 47G05
Secondary: 35S05: Pseudodifferential operators 58G15

Citation

Fujiwara, Daisuke. An approximate positive part of essentially self-adjoint pseudo-differential operators, II. Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), no. 3, 147--150. doi:10.3792/pjaa.57.147. https://projecteuclid.org/euclid.pja/1195516487


Export citation

References

  • [1] Fujiwara, D.: An approximate positive part of essentially self-adjoint pseudo-differential operators. I. Proc. Japan Acad., 57A, 1-6 (1981).
  • [2] Hormander, L.: Pseudo-differential operators and hypo-elliptic equations. Proc. Symp. Pure Math., 10, 118-196 (1966).
  • [3] Hormander, L.: The Weyl calculus of pseudo-differential operators. Comm. Pure Appl. Math., 32, 359-443 (1979).
  • [4] Nirenberg, L., and Treves, F.: On local solvability of linear partial differential equations, part II, Sufficient conditions, ibid., 23, 459-510 (1970).
  • [5] Voros, A.: An algebra of pseudo-differential operators and the asymptotics of quantum mechanics. J. Funct. Anal., 29, 104-132 (1978).
  • [6] Weyl, H.: Theory of Groups and Quantum Mechanics. Dover (1950).

See also

  • Part I: Daisuke Fujiwara. An approximate positive part of essentially self-adjoint pseudo-differential operators, I. Proc. Japan Acad. Ser. A Math. Sci., Volume 57, Number 1 (1981), 1--6.