Proceedings of the Japan Academy, Series A, Mathematical Sciences

“Borel” lines for meromorphic solutions of the difference equation $y \left( {x + 1} \right) = y \left( x \right) + 1 + \lambda / y \left( x \right)$

Niro Yanagihara

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 57, Number 7 (1981), 352-355.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195516329

Digital Object Identifier
doi:10.3792/pjaa.57.352

Mathematical Reviews number (MathSciNet)
MR636751

Zentralblatt MATH identifier
0524.30016

Citation

Yanagihara, Niro. “Borel” lines for meromorphic solutions of the difference equation $y \left( {x + 1} \right) = y \left( x \right) + 1 + \lambda / y \left( x \right)$. Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), no. 7, 352--355. doi:10.3792/pjaa.57.352. https://projecteuclid.org/euclid.pja/1195516329


Export citation

References

  • [1] T. Kimura: On the iteration of analytic functions. Funkcialaj Ekvacioj, 14, 197-238 (1971).
  • [2] T. Kimura: On meromorphic solutions of the difference equation y(x+l) —y(x)+l+y(x). Symposium on Ordinary Differential Equations. Lect. Notes in Math., vol. 312, Springer-Verlag, Berlin-Heidelberg-New York, pp.74-86 (1973).
  • [3] N. Yanagihara: Meromorphic solutions of the difference equation y(x + l) =y(x)+l+y(x), I. Funkcialaj Ekvacioj, 21, 97-104 (1978).
  • [4] N. Yanagihara: Meromorphic solutions of some difference equations, II. ibid., 24, 113-124 (1981).