Proceedings of the Japan Academy, Series A, Mathematical Sciences

On the Hasse norm principle for certain generalized dihedral extensions over $\mathbf{Q}$

Masanori Morishita

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 66, Number 10 (1990), 321-324.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195512296

Digital Object Identifier
doi:10.3792/pjaa.66.321

Mathematical Reviews number (MathSciNet)
MR1103968

Zentralblatt MATH identifier
0739.11053

Subjects
Primary: 11R34: Galois cohomology [See also 12Gxx, 19A31]

Citation

Morishita, Masanori. On the Hasse norm principle for certain generalized dihedral extensions over $\mathbf{Q}$. Proc. Japan Acad. Ser. A Math. Sci. 66 (1990), no. 10, 321--324. doi:10.3792/pjaa.66.321. https://projecteuclid.org/euclid.pja/1195512296


Export citation

References

  • [1] K. S. Brown: Cohomology of Groups. Springer, GTM., 87 (1982).
  • [2] M. Morishita: On 5-class number relations of algebraic tori in Galois extensions of global fields (1990) (preprint).
  • [3] T. Ono: On some class number relations for Galois extensions. Nagoya Math. J., 107, 121-133 (1987).
  • [4] T. Ono: A note on the Artin Map. II. Proc. Japan Acad., 66A, 132-136 (1990).
  • [5] M.J. Razar: Central and genus class fields and the Hasse norm theorem. Comp. Math., 35, 281-298 (1977).
  • [6] J. Tate: Global class field theory. Algebraic Number Theory (eds. J. W. S. Cassels and A. Frohlich). Thompson Book Company, Washington D.C., pp. 162-203 (1967).
  • [7] H. Wada: A table of ideal class groups of imaginary quadratic fields. Proc. Japan. Acad., 46, 401-403 (1970).