Proceedings of the Japan Academy, Series A, Mathematical Sciences

Gamma factors and Plancherel measures

Nobushige Kurokawa

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 68, Number 9 (1992), 256-260.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195511631

Digital Object Identifier
doi:10.3792/pjaa.68.256

Mathematical Reviews number (MathSciNet)
MR1202627

Zentralblatt MATH identifier
0797.11053

Citation

Kurokawa, Nobushige. Gamma factors and Plancherel measures. Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 9, 256--260. doi:10.3792/pjaa.68.256. https://projecteuclid.org/euclid.pja/1195511631


Export citation

References

  • [1] E. W. Barnes : On the theory of the multiple gamma function. Trans. Cambridge Philos. Soc., 19, 374-425 (1904).
  • [2] R. S. Cahn and J. A. Wolf: Zeta functions and their asymptotic expansions for compact symmetric spaces of rank one. Comment. Math. Helvetici, 51, 1-21 (1976).
  • [3] E. Cartan: Sur la determination d'un systeme orthogonal complet dans un espace de Riemann symetrique clos. Rendiconti del Circolo Matematico di Palermo, 53, 217-252 (1928).
  • [4] D. Fried : The zeta functions of Ruelle and Selberg I. Ann. Scient. Ec. Norm. Sup., 19, 491-517 (1986).
  • [5] R. Gangolli: Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one. Illinois J. Math., 21, 1-41 (1977).
  • [6] O. Holder: Ueber eine transcendente Function. Gottingen Nachrichten 1886, Nr. 16, pp. 514-522.
  • [7] N. Kurokawa: Multiple sine functions and Selberg zeta functions. Proc. Japan Acad., 67A, 61-64 (1991).
  • [8] N. Kurokawa: Lectures on multiple sine functions. Univ. of Tokyo, 1991, April-July, notes by Shin-ya Koyama.
  • [9] N. Kurokawa: Multiple zeta functions: an example. Proc. of "Zeta Functions in Geometry" (Tokyo Institute of Technology, 1990 August).
  • [10] N. Kurokawa: Siegel wave forms and Kronecker limit formula without absolute value. RIMS Kyoto Kokyu-roku, 792, 64-133 (1992).
  • [11] Yu. I. Manin: Lectures on zeta functions and motives. Harvard-MSRI-Yale-Columbia (1991-1992); Max-Planck Lecture Note (1992).
  • [12] R. J. Miatello: On the Plancherel measure for linear Lie groups of rank one. Manu-scripta Math., 29, 247-276 (1979).
  • [13] A. Selberg: Harmonic analysis and discontinuous groups on weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc., 20, 47-87 (1956).
  • [14] T. Shintani: On a Kronecker limit formula for real quadratic fields. J. Fac. Sci. Univ. Tokyo, 24, 167-199 (1977).
  • [15] M. Wakayama: Zeta functions of Selberg's type associated with homogeneous vector bundles. Hiroshima Math. J., 15, 235-295 (1985).