Proceedings of the Japan Academy, Series A, Mathematical Sciences

On a Diophantine equation of Erdös

Nobuhiro Terai

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 70, Number 7 (1994), 213-217.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195510942

Digital Object Identifier
doi:10.3792/pjaa.70.213

Mathematical Reviews number (MathSciNet)
MR1303565

Zentralblatt MATH identifier
0821.11022

Subjects
Primary: 11D61: Exponential equations
Secondary: 11J86: Linear forms in logarithms; Baker's method

Citation

Terai, Nobuhiro. On a Diophantine equation of Erdös. Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), no. 7, 213--217. doi:10.3792/pjaa.70.213. https://projecteuclid.org/euclid.pja/1195510942


Export citation

References

  • [1] H. Darmon: The equations xn + yn = z and xn + yn = z3. Intern. Math. Res. Not., 10, 263-273 (1993).
  • [2] P. Denes : Uber die diophantische Gleichungen xp + yp = czp. Acta. Math., 88, 241-251 (1952).
  • [3] Y. Domar: On the diophantine equation | Axn - Byn | = 1, n > 5. Math. Scand., 2, 29-32 (1954).
  • [4] P. Erdos : On a diophantine equation. J. London Math. Soc., 26, 176-178 (1951).
  • [5] G. Frey: Links between stable elliptic curves and certain diophantine equations. Ann. Univ. Saraviensis, Ser. Math., 1, 1-40 (1986).
  • [6] R. Guy : Unsolved Problems in Number Theory. Springer-Verlag (1981).
  • [7] K. Gyory and Z. Z Papp : Norm form equations and explicit lower bounds for linear forms with algebraic coefficients. Studies in Pure Math., to the Memory of Paul Turan, Birkhauser, Basel, pp. 245-257 (1983).
  • [8] W. Ljunggren: New solution of a problem proposed by E. Lucas. Norsk Mat. Tidsskr., 34, 65-72 (1952).
  • [9] Le Maohua: A note on the diophantine equation xp l - 1 = pyq. C. R. Math. Rep. Acad. Sci. Canada, (4), 15, 121-124 (1993).
  • [10] A. Rotkiewicz: On the equation xP + yp = z2. Bull. Acad. Polon. Sci. Ser. Sci. Math.,30, 211-214 (1982).
  • [11] C. L. Siegel: Die Gleichung axn - byn = c. Math. Ann., 144, 57-68 (1937).
  • [12] G. Terjanian: Sur l'equation x2P + y2P = z2P. C. R. Acad. Sci. Paris, 285, 973-975 (1977).
  • [13] R. Tijdeman: Applications of the Gel'fond-Baker method to rational number theory. Colloq. Math. Soc. Janos Bolyai, 13, 399-416 (1974).
  • [14] G. N. Watson: The problem of the square pyramid. Messenger of Math., 48, 1-22 (1918/19).