Proceedings of the Japan Academy, Series A, Mathematical Sciences

Classification of a family of Hamiltonian-stationary Lagrangian submanifolds in C$^{n}$

Bang-Yen Chen

Full-text: Open access

Abstract

A Lagrangian submanifold in the complex Euclidean $n$-space ${\bf C}^n$ is called Hamiltonian-stationary if it is a critical point of the area functional restricted to (compactly supported) Hamiltonian variations. In this article, we classify the family of Hamiltonian-stationary Lagrangian submanifolds of ${\bf C}^n$ which are Lagrangian $H$-umbilical.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 82, Number 9 (2006), 173-178.

Dates
First available in Project Euclid: 4 December 2006

Permanent link to this document
https://projecteuclid.org/euclid.pja/1165244967

Digital Object Identifier
doi:10.3792/pjaa.82.173

Mathematical Reviews number (MathSciNet)
MR2293505

Zentralblatt MATH identifier
1128.53052

Subjects
Primary: 53D12: Lagrangian submanifolds; Maslov index
Secondary: 53C40: Global submanifolds [See also 53B25]

Keywords
Hamiltonian-stationary $H$-umbilical submanifold complex extensor

Citation

Chen, Bang-Yen. Classification of a family of Hamiltonian-stationary Lagrangian submanifolds in C$^{n}$. Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 9, 173--178. doi:10.3792/pjaa.82.173. https://projecteuclid.org/euclid.pja/1165244967


Export citation

References

  • R. Aiyama, Lagrangian surfaces with circle symmetry in the complex two-space, Michigan Math. J. 52 (2004), no. 3, 491–506.
  • A. Amarzaya and Y. Ohnita, Hamiltonian stability of certain minimal Lagrangian submanifolds in complex projective spaces, Tohoku Math. J. (2) 55 (2003), no. 4, 583–610.
  • H. Anciaux, Construction of many Hamiltonian stationary Lagrangian surfaces in Euclidean four-space, Calc. Var. Partial Differential Equations 17 (2003), no. 2, 105–120.
  • H. Anciaux, I. Castro and P. Romon, Lagrangian submanifolds foliated by $(n-1)$-spheres in $\mathbf R\sp {2n}$, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 4, 1197–1214.
  • I. Castro and B.-Y. Chen, Lagrangian surfaces in complex Euclidean plane via spherical and hyperbolic curves, Tohoku Math. J. 58 (2006), 565–579.
  • I. Castro and F. Urbano, Examples of unstable Hamiltonian-minimal Lagrangian tori in $\mathbf C\sp 2$, Compositio Math. 111 (1998), no. 1, 1–14.
  • I. Castro, H. Li and F. Urbano, \H submanifolds in complex space forms, Pacific J. Math. (to appear).
  • B.-Y. Chen, Geometry of submanifolds, Dekker, New York, 1973.
  • B.-Y. Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J. (2) 49 (1997), no. 2, 277–297.
  • B.-Y. Chen, Construction of Lagrangian surfaces in complex Euclidean plane with Legendre curves, Kodai Math. J. 29 (2006), no. 1, 84–112.
  • B.-Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257–266.
  • F. Hélein and P. Romon, Hamiltonian stationary Lagrangian surfaces in $\mathbf C\sp 2$, Comm. Anal. Geom. 10 (2002), no. 1, 79–126.
  • F. Hélein and P. Romon, Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions, Comment. Math. Helv. 75 (2000), no. 4, 668–680.
  • A. E. Mironov, On Hamiltonian-minimal and minimal Lagrangian submanifolds in $\mathbf C\sp n$ and $\mathbf C{\rm P}\sp n$, Dokl. Akad. Nauk 396 (2004), no. 2, 159–161.
  • Y.-G. Oh, Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds, Invent. Math. 101 (1990), no. 2, 501–519. \beginthebibliography99
  • R. Aiyama, Lagrangian surfaces with circle symmetry in the complex 2-space, Michigan Math. J. 52 (2004), 491–506.
  • A. Amarzaya and Y. Ohnita, Hamiltonian stability of certain minimal Lagrangian submanifolds in complex projective spaces. Tohoku Math. J. 55 (2003), 583–610.
  • H. Anciaux, Construction of many \H surfaces in Euclidean four-space, Calc. of Var. 17 (2003), 105–120.
  • H. Anciaux, I. Castro and P. Romon, Lagrangian submanifolds foliated by $(n-1)$-spheres in $\mathbf E^{2n}$, Acta Math. Sinica, 22 (2006), 1197–1214.
  • I. Castro and B.-Y. Chen, Lagrangian surfaces in complex Euclidean plane via spherical and hyperbolic curves, Tohoku Math. J. 58 (2006), 565–579.
  • I. Castro and F. Urbano, Examples of unstable Hamiltonian-minimal Lagrangian tori in $\mathbf C\sp 2$, Compositio Math. 111 (1998), 1–14.
  • I. Castro, H. Li and F. Urbano, \H submanifolds in complex space forms, to appear in Pacific J. Math.
  • B.-Y. Chen, Geometry of Submanifolds, Dekker, New York, 1973.
  • B.-Y. Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J. 49 (1997), 277–297.
  • B.-Y. Chen, Construction of Lagrangian surfaces in complex Euclidean plane with Legendre curves, Kodai Math. J. 29 (2006), 84–112.
  • B.-Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257–266.
  • F. Hélein and P. Romon, Hamiltonian stationary Lagrangian surfaces in $\mathbf C\sp 2$, Comm. Anal. Geom. 10 (2002), 79–126.
  • F. Hélein and P. Romon, Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions, Comment. Math. Helv. 75 (2000), 668–680.
  • A. E. Mironov, On Hamiltonian-minimal and minimal Lagrangian submanifolds in \cn and $CP^n$, Dokl. Akad. Nauk 396 (2004), 159–161.
  • Y.-G. Oh, Second variation and stabilities of minimal Lagrangian submanifolds in Kaehler manifolds, Invent. Math. 101 (1990), 501–519.