Proceedings of the Japan Academy, Series A, Mathematical Sciences

On abundance theorem for semi log canonical threefolds

Osamu Fujino

Full-text: Open access

Abstract

Let $(X, \Delta)$ be a proper semi log canonical threefold with $K_X + \Delta$ nef. Then $K_X + \Delta$ is semi-ample.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 75, Number 6 (1999), 80-84.

Dates
First available in Project Euclid: 23 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.pja/1148393906

Digital Object Identifier
doi:10.3792/pjaa.75.80

Mathematical Reviews number (MathSciNet)
MR1712649

Zentralblatt MATH identifier
0990.14005

Keywords
Abundance Theorem

Citation

Fujino, Osamu. On abundance theorem for semi log canonical threefolds. Proc. Japan Acad. Ser. A Math. Sci. 75 (1999), no. 6, 80--84. doi:10.3792/pjaa.75.80. https://projecteuclid.org/euclid.pja/1148393906


Export citation

References

  • F. Ambro: The locus of log canonical singularities. (1998) (preprint).
  • A. Beauville: Complex Algebraic Surfaces, 2nd ed. London Math. Soc. Stud. Texts, 34 (1996).
  • O. Fujino: Abundance theorem for semi log canonical threefolds. RIMS-1213 (1998) (preprint).
  • O. Fujino: Base point free theorem of Reid-Fukuda type (1999) (preprint).
  • T. Fujita: Fractionally logarithmic canonical rings of surfaces. J. Fac. Sci. Univ. Tokyo. 30, 685–696 (1984).
  • S. Iitaka: Algebraic Geometry, An Introduction to Birational Geometry of Algebraic Varieties. Grad. Texts in Math., 76, Springer (1981).
  • K. Karu: Minimal models and boundedness of stable varieties. preliminary version (1998) (preprint).
  • Y. Kawamata: Pluricanonical systems on minimal algebraic varieties. Inv. Math., 79, 567–588 (1985).
  • Y. Kawamata: Abundance theorem for minimal threefolds. Inv. Math., 108, 229–246 (1992).
  • Y. Kawamata: On Fujita's freeness conjecture for 3-folds and 4-folds. Math. Ann., 308, 491–505 (1997).
  • Y. Kawamata, K. Matsuda, and K. Matsuki: Introduction to the Minimal Model Problem, in Algebraic Geometry, Sendai 1985. Adv. Stud. Pure Math., 10, Kinokuniya and North-Holland, 283–360 (1987).
  • S. Keel, K. Matsuki, and J. McKernan: Log abundance theorem for threefolds. Duke Math. J., 75, 99–119 (1994).
  • J. Kollár: Projectivity of complete moduli. J. Differential Geom., 32, 235–268 (1990).
  • J. Kollár et al.: Flips and Abundance for Algebraic Threefolds. Astérisque, 211, Soc. Math. France (1992).
  • J. Kollár and S. Mori: Birational geometry of algebraic varieties. Cambridge Tracts in Math., 134 (1998).
  • J. Kollár and N. Shepherd-Barron: Threefolds and deformations of surface singularities. Invent. Math., 91, 299–338 (1988).
  • D. Mumford: Abelian Varieties. Oxford Univ. Press, pp. 1–242 (1970).
  • F. Sakai: Kodaira dimensions of complements of divisors, in Complex Analysis and Algebraic Geometry. Iwanami and Cambridge Univ. Press, pp. 239–257 (1977).
  • V. V. Shokurov: 3-fold log flips. Izv. Ross. Akad. Nauk Ser. Mat., 56, 105–203 (1992); Russian Acad. Sci. Izv. Math. 40, 95–202 (1993) (translated in English).
  • E. Szabó: Divisorial log terminal singularities. J. Math. Sci. Univ. Tokyo, 1, 631–639 (1995).
  • K. Ueno: Classification Theory of Algebraic Varieties and Compact Complex Spaces. Springer Lecture Notes, vol. 439, pp. 1–278 (1975).