Proceedings of the Japan Academy, Series A, Mathematical Sciences

Global existence of solutions to the generalized Proudman-Johnson equation

Xinfu Chen and Hisashi Okamoto

Full-text: Open access

Abstract

We consider the equation $f_{xxt} + f f_{xxx} - a f_x f_{xx} = \nu f_{xxxx}$, $x \in (0,1)$, $t > 0 $, where $a \in \mathbf{R}$ is a constant, with the periodic boundary condition. We show that any solution exists globally in time if $-3 \le a \le 1$.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 78, Number 7 (2002), 136-139.

Dates
First available in Project Euclid: 23 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.pja/1148392636

Digital Object Identifier
doi:10.3792/pjaa.78.136

Mathematical Reviews number (MathSciNet)
MR1930218

Zentralblatt MATH identifier
1020.35002

Subjects
Primary: 35K55: Nonlinear parabolic equations 35Q30: Navier-Stokes equations [See also 76D05, 76D07, 76N10] 76D03: Existence, uniqueness, and regularity theory [See also 35Q30]

Keywords
Proudman-Johnson equation global existence

Citation

Chen, Xinfu; Okamoto, Hisashi. Global existence of solutions to the generalized Proudman-Johnson equation. Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7, 136--139. doi:10.3792/pjaa.78.136. https://projecteuclid.org/euclid.pja/1148392636


Export citation

References

  • Chen, X., and Okamoto, H.: Global Existence of Solutions to the Proudman-Johnson Equation. Proc. Japan Acad., 76A, 149–152 (2000).
  • Doering, C. R., and Gibbon, J. D.: Applied Analysis of the Navier-Stokes Equations. Cambridge Univ. Press, Cambridge-New York (1995).
  • Giga, Y., and Giga, M.-H.: Nonlinear Partial Differential Equations. Kyoritsu Shuppan, Tokyo (1999), (in Japanese).
  • Kato, T., and Fujita, H.: On the nonstationary Navier-Stokes system. Rend. Semin. Mat. Univ. Padova, 32, 243–260 (1962).
  • Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York (1983).
  • Proudman, I., and Johnson, K.: Boundary-layer growth near a rear stagnation point. J. Fluid Mech., 12, 161–168 (1962).
  • Okamoto, H., and Zhu, J.: Some similarity solutions of the Navier-Stokes equations and related topics. Taiwanese J. Math., 4, 65–103 (2000).
  • Sell, G., and You, Y.: Dynamics of Evolutionary Equations. Springer Verlag, New York (2002).