Proceedings of the Japan Academy, Series A, Mathematical Sciences

An example of elliptic curve over $\mathbf {Q}$ with rank equal to 15

Andrej Dujella

Full-text: Open access


We construct an elliptic curve over $\mathbf{Q}$ with non-trivial 2-torsion point and rank exactly equal to 15.

Article information

Proc. Japan Acad. Ser. A Math. Sci., Volume 78, Number 7 (2002), 109-111.

First available in Project Euclid: 23 May 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11G05: Elliptic curves over global fields [See also 14H52]

Elliptic curve rank


Dujella, Andrej. An example of elliptic curve over $\mathbf {Q}$ with rank equal to 15. Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7, 109--111. doi:10.3792/pjaa.78.109.

Export citation


  • Atkin, A. O. L., and Morain, F.: Finding suitable curves for the elliptic curve method of factorization. Math. Comp., 60, 399–405 (1993).
  • Campbell, G.: Finding Elliptic Curves and Families of Elliptic Curves over $\mathbf{Q}$ of Large Rank. Dissertation, Rutgers (1999).
  • Connell, I.: APECS,
  • Cremona, J.: Algorithms for Modular Elliptic Curves. Cambridge Univ. Press, Cambridge-New York (1997).
  • Dujella, A.: High rank elliptic curves with prescribed torsion.\~,duje/tors/tors.html
  • Fermigier, S.: Exemples de courbes elliptiques de grand rang sur $\mathbf{Q}(t)$ et sur $\mathbf{Q}$ possedant des points d'ordre 2. C. R. Acad. Sci. Paris Ser. I, 322, 949–952 (1996).
  • Kihara, S.: On an elliptic curve over $\mathbf{Q}(t)$ of rank $\geq 9$ with a non-trivial 2-torsion point. Proc. Japan Acad., 77A, 11–12 (2001).
  • Kretschmer, T. J.: Construction of elliptic curves with large rank. Math. Comp., 46, 627–635 (1986).
  • Kulesz, L., and Stahlke, C.: Elliptic curves of high rank with a non-trivial torsion group over $\mathbf{Q}$. (Preprint).
  • Martin, R., and McMillen, W.: An elliptic curve over $\mathbf{Q}$ with rank at least 24. Number Theory Listserver, May (2000).
  • Mestre, J.-F.: Construction de courbes elliptiques sur $\mathbf{Q}$ de rang $\geq 12$. C. R. Acad. Sci. Paris Ser. I, 295, 643–644 (1982).
  • Mestre, J.-F.: Courbes elliptiques de rang $\geq 11$ sur $\mathbf{Q}(T)$. C. R. Acad. Sci. Paris Ser. I, 313, 139–142 (1991).
  • Montgomery, P. L.: Speeding the Pollard and elliptic curve methods of factorization. Math. Comp., 48, 243–264 (1987).
  • Nagao, K.: An example of elliptic curve over $\mathbf{Q}$ with $\rank\geq 20$. Proc. Japan Acad., 69A, 291–293 (1993).
  • Schneiders, U., and Zimmer, H. G.: The rank of elliptic curves upon quadratic extension. Computational Number Theory (eds. Pethő, A., Williams, H. C., and Zimmer, H. G.), de Gruyter, Berlin, pp. 239–260 (1991).
  • Womack, T.: Curves with moderate rank and interesting torsion group. \hfill pmxtow/torsion.htm