Osaka Journal of Mathematics

Curves with maximally computed Clifford index

Takao Kato and Gerriet Martens

Full-text: Open access

Abstract

We say that a curve $X$ of genus $g$ has maximally computed Clifford index if the Clifford index $c$ of $X$ is, for $c>2$, computed by a linear series of the maximum possible degree $d$ < $g$; then $d = 2c+3$ resp. $d = 2c+4$ for odd resp. even $c$. For odd $c$ such curves have been studied in [6]. In this paper we analyze if/how far analoguous results hold for such curves of even Clifford index $c$.

Article information

Source
Osaka J. Math., Volume 56, Number 2 (2019), 277-288.

Dates
First available in Project Euclid: 3 April 2019

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1554278425

Mathematical Reviews number (MathSciNet)
MR3934976

Zentralblatt MATH identifier
07080085

Subjects
Primary: 14H45: Special curves and curves of low genus
Secondary: 14H51: Special divisors (gonality, Brill-Noether theory)

Citation

Kato, Takao; Martens, Gerriet. Curves with maximally computed Clifford index. Osaka J. Math. 56 (2019), no. 2, 277--288. https://projecteuclid.org/euclid.ojm/1554278425


Export citation

References

  • R.D.M. Accola: On Castelnuovo's inequality for algebraic curves. I, Trans. Amer. Math. Soc. 251 (1979), 355–373.
  • E. Arbarello, M. Cornalba, P. Griffiths and J. Harris: Geometry of Algebraic Curves. I, Grundlehren Math. Wiss., 267, Springer, New York 1985.
  • C. Ciliberto: Hilbert functions of finite sets of points and the genus of a curve in a projective space; in Lecture Notes in Mathematics 1266, Springer, New York, 1987, 24–73.
  • M. Coppens: Smooth curves having infinitely many linear systems $g_d^1$., Bull. Math. Soc. Belg., Ser. B 40 (1988), 153–176.
  • M. Coppens and G. Martens: Secant spaces and Clifford's theorem, Compositio Math. 78 (1991), 193–212.
  • D. Eisenbud, H. Lange, G. Martens and F.-O. Schreyer: The Clifford dimension of a projective curve, Compositio Math. 72 (1989), 173–204.
  • M. Green and R. Lazarsfeld: Special divisors on curves on a K3 surface, Invent. Math. 89 (1987), 357–370.
  • F.J. Gallego and B.P. Purnaprajna: Normal presentation on elliptic ruled surfaces, J. Algebar 186 (1996), 597–625.
  • R. Hartshorne: Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, New York 1977.
  • S. Kim: On the algebraic curve of Clifford index $c$, Comm. Korean Math. Soc. 14 (1999), 693–698.
  • A.L. Knutsen: On two conjectures for curves on K3 surfaces, Int. J. Math. 20 (2009), 1547–1560.
  • C. Keem and G. Martens: Curves without plane models of small degree, Math. Nachr. 281 (2008), 1791–1798.
  • C. Keem, S. Kim and G. Martens: On a result of Farkas, J. Reine Angew. Math. 405 (1990), 112–116.
  • H.H. Martens: Varieties of special divisors on a curve. II, J. Reine Angew. Math. 233 (1968), 89–100.
  • B. Saint-Donat: Projective models of K3 surfaces, Amer. J. Math. 96 (1974), 602–639.