Osaka Journal of Mathematics
- Osaka J. Math.
- Volume 54, Number 3 (2017), 499-516.
Feller evolution families and parabolic equations with form-bounded vector fields
Abstract
We show that the weak solutions of parabolic equation $\partial_t u - \Delta u + b(t,x) \cdot \nabla u=0$, $(t,x) \in (0,\infty) \times \mathbb R^d$, $d \geqslant 3$, for $b(t,x)$ in a wide class of time-dependent vector fields capturing critical order singularities, constitute a Feller evolution family and, thus, determine a Feller process. Our proof uses an a priori estimate on the $L^p$-norm of the gradient of solution in terms of the $L^q$-norm of the gradient of initial function, and an iterative procedure that moves the problem of convergence in $L^\infty$ to $L^p$.
Article information
Source
Osaka J. Math., Volume 54, Number 3 (2017), 499-516.
Dates
First available in Project Euclid: 7 August 2017
Permanent link to this document
https://projecteuclid.org/euclid.ojm/1502092825
Mathematical Reviews number (MathSciNet)
MR3685589
Zentralblatt MATH identifier
1377.35128
Subjects
Primary: 35K10: Second-order parabolic equations 60G12: General second-order processes
Citation
Kinzebulatov, Damir. Feller evolution families and parabolic equations with form-bounded vector fields. Osaka J. Math. 54 (2017), no. 3, 499--516. https://projecteuclid.org/euclid.ojm/1502092825