Osaka Journal of Mathematics

Conjugacy class and discreteness in $\mathit{SL}(2, \mathbb{C})$

Shihai Yang and Tiehong Zhao

Full-text: Open access

Abstract

In this note we establish a new discreteness criterion for a non-elementary group $G$ in $\mathit{SL}(2, \mathbb{C})$. Namely, $G$ is discrete if all the two-generator subgroups are discrete, where one generator is a non-trivial element $f$ in $G$, and the other is in the conjugacy class of $f$.

Article information

Source
Osaka J. Math., Volume 53, Number 4 (2016), 1047-1053.

Dates
First available in Project Euclid: 4 October 2016

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1475601831

Mathematical Reviews number (MathSciNet)
MR3554856

Zentralblatt MATH identifier
1358.30017

Subjects
Primary: 30C62: Quasiconformal mappings in the plane 30F40: Kleinian groups [See also 20H10] 20H10: Fuchsian groups and their generalizations [See also 11F06, 22E40, 30F35, 32Nxx]

Citation

Yang, Shihai; Zhao, Tiehong. Conjugacy class and discreteness in $\mathit{SL}(2, \mathbb{C})$. Osaka J. Math. 53 (2016), no. 4, 1047--1053. https://projecteuclid.org/euclid.ojm/1475601831


Export citation

References

  • A.F. Beardon: The Geometry of Discrete Groups, Graduate Texts in Mathematics 91, Springer, New York, 1983.
  • M. Chen: Discreteness and convergence of Möbius groups, Geom. Dedicata 104 (2004), 61–69.
  • F.W. Gehring and G.J. Martin: Commutators, collars and the geometry of Möbius groups, J. Anal. Math. 63 (1994), 175–219.
  • J. Gilman: Inequalities in discrete subgroups of $\mathrm{PSL}(2,\mathbf{R})$, Canad. J. Math. 40 (1988), 115–130.
  • N.A. Isachenko, Systems of generators of subgroups of $\mathrm{PSL}(2,{\mathbf{C}})$, Siberian Math. J. 31 (1990), 162–165.
  • T. Jørgensen: On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976), 739–749.
  • G. Rosenberger: Minimal generating systems of a subgroup of $\mathrm{SL}(2,\mathbf{C})$, Proc. Edinburgh Math. Soc. (2) 31 (1988), 261–265.
  • D. Sullivan: Quasiconformal homeomorphisms and dynamics, II. Structural stability implies hyperbolicity for Kleinian groups, Acta Math. 155 (1985), 243–260.
  • P. Tukia and X. Wang: Discreteness of subgroups of $\mathrm{SL}(2,\mathbf{C})$ containing elliptic elements, Math. Scand. 91 (2002), 214–220.
  • S. Yang: On the discreteness criterion in $\mathrm{SL}(2,\mathbb{C})$, Math. Z. 255 (2007), 227–230.
  • S. Yang: Test maps and discrete groups in $\mathit{SL}(2,C)$, Osaka J. Math. 46 (2009), 403–409.
  • S. Yang and T. Zhao: Test maps and discrete groups in $\mathit{SL}(2,\mathbb{C})$ II, Glasg. Math. J. 56 (2014), 53–56.