Osaka Journal of Mathematics

Abundance theorem for semi log canonical surfaces in positive characteristic

Hiromu Tanaka

Full-text: Open access

Abstract

We prove the abundance theorem for semi log canonical surfaces in positive characteristic.

Article information

Source
Osaka J. Math., Volume 53, Number 2 (2016), 535-566.

Dates
First available in Project Euclid: 27 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1461781801

Mathematical Reviews number (MathSciNet)
MR3492812

Zentralblatt MATH identifier
1353.14020

Subjects
Primary: 14E30: Minimal model program (Mori theory, extremal rays)
Secondary: 14J10: Families, moduli, classification: algebraic theory

Citation

Tanaka, Hiromu. Abundance theorem for semi log canonical surfaces in positive characteristic. Osaka J. Math. 53 (2016), no. 2, 535--566. https://projecteuclid.org/euclid.ojm/1461781801


Export citation

References

  • D. Abramovich, L.-Y. Fong, J. Kollár and J. M\textsuperscriptcKernan: Semi log canonical surfaces; in Flips and Abundance for Algebraic Threefolds, Soc. Math. France, Astérisque 211, 1992, 139–154.
  • D. Abramovich, L.-Y. Fong and K. Matsuki: Abundance for threefolds: $\nu=2$; in Flips and Abundance for Algebraic Threefolds, Soc. Math. France, Astérisque 211, 1992, 159–163.
  • L. Bădescu: Algebraic Surfaces, Universitext, Springer, New York, 2001.
  • O. Fujino: Abundance theorem for semi log canonical threefolds, Duke Math. J. 102 (2000), 513–532.
  • O. Fujino: Fundamental theorems for semi log canonical pairs, preprint (2012).
  • O. Fujino and Y. Gongyo: Log pluricanonical representations and the abundance conjecture, preprint (2011).
  • T. Fujita: Fractionally logarithmic canonical rings of algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), 685–696.
  • Y. Gongyo: Abundance theorem for numerically trivial log canonical divisors of semi-log canonical pairs, J. Algebraic Geom. 22 (2013), 549–564.
  • C.D. Hacon and C. Xu: On finiteness of $B$-representation and semi-log canonical abundance, preprint (2011).
  • Y. Kawamata: Abundance theorem for minimal threefolds, Invent. Math. 108 (1992), 229–246.
  • S. Keel and J. Kollár: Log canonical flips; in Flips and Abundance for Algebraic Threefolds, Soc. Math. France, Astérisque 211, 1992, 95–101.
  • S. Keel, K. Matsuki and J. M\textsuperscriptcKernan: Log abundance theorem for threefolds, Duke Math. J. 75 (1994), 99–119.
  • J. Kollár: Singularities of the Minimal Model Program, Cambridge Tracts in Mathematics 200, Cambridge Univ. Press, Cambridge, 2013.
  • J. Kollár and S. Kovács: Birational geometry of log surfaces, preprint.
  • J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), 299–338.
  • J. Kollár, K. Matsuki and J. M\textsuperscriptcKernan: Abundance for threefolds; in Flips and Abundance for Algebraic Threefolds, Soc. Math. France, Astérisque 211, 1992, 159–163.
  • J. Kollár and S. Mori: Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics 134, Cambridge Univ. Press, Cambridge, 1998.
  • M. Nagata: A remark on the unique factorization theorem, J. Math. Soc. Japan 9 (1957), 143–145.
  • M. Raynaud: Contre-exemple au “vanishing theorem” en caractéristique $p > 0$; in C.P. Ramanujam–-a Tribute, Tata Inst. Fund. Res. Studies in Math. 8, Springer, Berlin, 1978, 273–278.
  • H. Tanaka: Minimal models and abundance for positive characteristic log surfaces, to appear in Nagoya Math.
  • H. Tanaka: The X-method for klt surfaces in positive characteristic, to appear in J. Algebraic Geom.
  • Q. Xie: Kawamata–Viehweg vanishing on rational surfaces in positive characteristic, Math. Z. 266 (2010), 561–570. \endthebibliography*