Osaka Journal of Mathematics

Complement to explicit description of Hopf surfaces and their automorphism groups

Takao Matumoto and Noriaki Nakagawa

Full-text: Open access

Abstract

In the previous paper we determined $\widetilde{\Aut}(X)$ of each Hopf surface $X = W/G$ with $W=\mathbf{C}^{2} - (0,0)$ so that its holomorphic automorphism group is given by $\Aut(X) = \widetilde{\Aut}(X)/G$. We calculate the group of connected components $\pi_{0}(\Aut(X))$ by reviewing the classification.

Article information

Source
Osaka J. Math., Volume 48, Number 2 (2011), 583-588.

Dates
First available in Project Euclid: 6 September 2011

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1315318354

Mathematical Reviews number (MathSciNet)
MR1772841

Zentralblatt MATH identifier
1234.32004

Subjects
Primary: 32J15: Compact surfaces

Citation

Matumoto, Takao; Nakagawa, Noriaki. Complement to explicit description of Hopf surfaces and their automorphism groups. Osaka J. Math. 48 (2011), no. 2, 583--588. https://projecteuclid.org/euclid.ojm/1315318354


Export citation

References