Osaka Journal of Mathematics

Beurling's theorem for nilpotent Lie groups

Kais Smaoui

Full-text: Open access

Abstract

In this paper, we prove an analogue of Beurling's theorem for an arbitrary simply connected nilpotent Lie group extending then earlier cases.

Article information

Source
Osaka J. Math., Volume 48, Number 1 (2011), 127-147.

Dates
First available in Project Euclid: 22 March 2011

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1300802708

Mathematical Reviews number (MathSciNet)
MR2802596

Zentralblatt MATH identifier
1216.22007

Subjects
Primary: 22E26
Secondary: 43A30: Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.

Citation

Smaoui, Kais. Beurling's theorem for nilpotent Lie groups. Osaka J. Math. 48 (2011), no. 1, 127--147. https://projecteuclid.org/euclid.ojm/1300802708


Export citation

References

  • A. Bonami, B. Demange and P. Jaming: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoamericana 19 (2003), 23–55.
  • A. Baklouti, N. Ben Salah and K. Smaoui: Some uncertainty principles on nilpotent Lie groups; in Banach Algebras and Their Applications, Contemp. Math. 363, Amer. Math. Soc., Providence, RI, 2004, 39–52.
  • A. Baklouti and N. Ben Salah: On theorems of Beurling and Cowling–Price for certain nilpotent Lie groups, Bull. Sci. Math. 132 (2008), 529–550.
  • A. Baklouti and N. Ben Salah: The $L^{p}$-$L^{q}$ version of Hardy's theorem on nilpotent Lie groups, Forum Math. 18 (2006), 245–262.
  • D.C. Cook: Müntz–Szasz theorems for nilpotent Lie groups, J. Funct. Anal. 157 (1998), 394–412.
  • E. Kaniuth and A. Kumar: Hardy's theorem for simply connected nilpotent Lie groups, Math. Proc. Cambridge Philos. Soc. 131 (2001), 487–494.
  • G.H. Hardy: A theorem concerning Fourier transforms, J. London Math. Soc. 8 (1933), 227–231.
  • G. Garimella: Un théorème de Paley-Wiener pour les groupes de Lie nilpotents, J. Lie Theory 5 (1995), 165–172.
  • L. Hörmander: A uniqueness theorem of Beurling for Fourier transform pairs, Ark. Mat. 29 (1991), 237–240.
  • L.J. Corwin and F.P. Greenleaf: Representations of Nilpotent Lie Groups and Their Applications, Part I, Basic Theory and Examples, Cambridge Univ. Press, Cambridge, 1990.
  • M. Cowling and J.F. Price: Generalisations of Heisenberg's inequality; in Harmonic Analysis (Cortona, 1982), Lecture Notes in Math. 992, Springer, Berlin, 1983, 443–449.
  • P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Raïs, P. Renouard and M. Vergne: Représentations des Groupes de Lie Résolubles, Dunod, Paris, 1972.
  • R.P. Sarkar and S. Thangavelu: On theorems of Beurling and Hardy for the Euclidean motion group, Tohoku Math. J. (2) 57 (2005), 335–351.
  • R.P. Sarkar and J. Sengupta: Beurling's theorem and characterization of heat kernel for Riemannian symmetric spaces of noncompact type, Canad. Math. Bull. 50 (2007), 291–312.
  • S. Parui and R.P. Sarkar: Beurling's theorem and $L^{p}$-$L^{q}$ Morgan's theorem for step two nilpotent Lie groups, Publ. Res. Inst. Math. Sci. 44 (2008), 1027–1056.
  • S. Thangavelu: On theorems of Hardy, Gilfand–Shilov and Beurling for semisimple Lie groups, Publ. Res. Inst. Math. Sci. 40 (2004), 311–344.
  • V. Havin and B. Jöricke: The Uncertainty Principle in Harmonic Analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 28, Springer, Berlin, 1994.