Osaka Journal of Mathematics

The forcing partial order on a family of braids forced by pseudo-Anosov 3-braids

Eiko Kin

Full-text: Open access

Abstract

Li-York theorem tells us that a period 3 orbit for a continuous map of the interval into itself implies the existence of a periodic orbit of every period. This paper concerns an analogue of the theorem for homeomorphisms of the 2-dimensional disk. In this case a periodic orbit is specified by a braid type and on the set of all braid types Boyland's dynamical partial order can be defined. We describe the partial order on a family of braids and show that a period 3 orbit of pseudo-Anosov braid type implies the Smale-horseshoe map which is a factor possessing complicated chaotic dynamics.

Article information

Source
Osaka J. Math., Volume 45, Number 3 (2008), 757-772.

Dates
First available in Project Euclid: 17 September 2008

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1221656651

Mathematical Reviews number (MathSciNet)
MR2468592

Zentralblatt MATH identifier
1153.37023

Subjects
Primary: 37E30: Homeomorphisms and diffeomorphisms of planes and surfaces 57M27: Invariants of knots and 3-manifolds
Secondary: 57M50: Geometric structures on low-dimensional manifolds

Citation

Kin, Eiko. The forcing partial order on a family of braids forced by pseudo-Anosov 3-braids. Osaka J. Math. 45 (2008), no. 3, 757--772. https://projecteuclid.org/euclid.ojm/1221656651


Export citation

References

  • L. Alsedà, J. Llibre and M. Misiurewicz: Combinatorial Dynamics and Entropy in Dimension One, second edition, World Sci. Publishing, River Edge, NJ, 2000.
  • D. Asimov and J. Franks: Unremovable closed orbits; in Geometric Dynamics (Rio de Janeiro, 1981), Lecture Notes in Math. 1007, Springer, Berlin, 1983, 22--29.
  • M. Bestvina and M. Handel: Train-tracks for surface homeomorphisms, Topology 34 (1995), 109--140.
  • J.S. Birman: Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton Univ. Press, Princeton, NJ, 1974.
  • P. Boyland: Rotation sets and monotone periodic orbits for annulus homeomorphisms, Comment. Math. Helv. 67 (1992), 203--213.
  • P.L. Boyland, H. Aref and M.A. Stremler: Topological fluid mechanics of stirring, J. Fluid Mech. 403 (2000), 277--304.
  • A. de Carvalho and T. Hall: Braid forcing and star-shaped train tracks, Topology 43 (2004), 247--287.
  • A. Fathi, F. Laudenbach, and V. Poenaru: Travaux de Thurston sur les Surfaces, Astérisque 66--67, Société Mathématique de France, Paris, 1979.
  • T. Hall: Unremovable periodic orbits of homeomorphisms, Math. Proc. Cambridge Philos. Soc. 110 (1991), 523--531.
  • T. Hall: The creation of horseshoes, Nonlinearity 7 (1994), 861--924.
  • M. Handel: The forcing partial order on the three times punctured disk, Ergodic Theory Dynam. Systems 17 (1997), 593--610.
  • E. Hironaka and E. Kin: A family of pseudo-Anosov braids with small dilatation, Algebr. Geom. Topol. 6 (2006), 699--738.
  • E. Kin and T. Sakajo: Efficient topological chaos embedded in the blinking vortex system, Chaos 15 (2005).
  • B. Kolev: Periodic orbits of period $3$ in the disc, Nonlinearity 7 (1994), 1067--1071.
  • T.Y. Li and J.A. Yorke: Period three implies chaos, Amer. Math. Monthly 82 (1975), 985--992.
  • J. Los: On the forcing relation for surface homeomorphisms, Inst. Hautes Études Sci. Publ. Math. 85 (1997), 5--61.