Osaka Journal of Mathematics

Lifespan for radially symmetric solutions to systems of semilinear wave equations with multiple speeds

Soichiro Katayama

Full-text: Open access

Abstract

We consider the Cauchy problem for a system of semilinear wave equations with multiple propagation speeds in three space dimensions. We obtain the sharp lower bound for the lifespan of radially symmetric solutions to a class of these systems. We also show global existence of radially symmetric solutions to another class of systems with small initial data.

Article information

Source
Osaka J. Math., Volume 45, Number 3 (2008), 691-717.

Dates
First available in Project Euclid: 17 September 2008

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1221656647

Mathematical Reviews number (MathSciNet)
MR2468588

Zentralblatt MATH identifier
1209.35086

Subjects
Primary: 35L70: Nonlinear second-order hyperbolic equations
Secondary: 35L05: Wave equation 35L15: Initial value problems for second-order hyperbolic equations 35L55: Higher-order hyperbolic systems

Citation

Katayama, Soichiro. Lifespan for radially symmetric solutions to systems of semilinear wave equations with multiple speeds. Osaka J. Math. 45 (2008), no. 3, 691--717. https://projecteuclid.org/euclid.ojm/1221656647


Export citation

References

  • F. Asakura: Existence of a global solution to a semi-linear wave equation with slowly decreasing initial data in three space dimensions, Comm. Partial Differential Equations 11 (1986), 1459--1487.
  • D. Christodoulou: Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math. 39 (1986), 267--282.
  • F. John: Blow-up for quasi-linear wave equations in three space-dimensions, Comm. Pure Appl. Math. 34 (1981), 29--51.
  • F. John and S. Klainerman: Almost global existence to general nonlinear wave equations in three space-dimensions, Comm. Pure Appl. Math. 37 (1984), 235--268.
  • S. Katayama: Global existence for a class of systems of nonlinear wave equations in three space dimensions, Chinese Ann. Math. 25B (2004), 463--482.
  • S. Katayama: Global and almost---global existence for systems of nonlinear wave equations with different propagation speeds, Diff. Integral Eqs. 17 (2004), 1043--1078.
  • S. Katayama: Global existence for systems of wave equations with nonresonant nonlinearities and null forms, J. Differential Equations 209 (2005), 140--171.
  • S. Katayama and A. Matsumura: Sharp lower bound for the lifespan of the systems of semilinear wave equations with multiple speeds, J. Math. Kyoto Univ. 45 (2005), 391--403.
  • S. Katayama and K. Yokoyama: Global small amplitude solutions to systems of nonlinear wave equations with multiple speeds, Osaka J. Math. 43 (2006), 283--326.
  • S. Klainerman: Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), 321--332.
  • S. Klainerman: The null condition and global existence to nonlinear wave equations; in Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Lectures in Applied Math. 23, Amer. Math. Soc., Providence, RI, 1986, 293--326.
  • S. Klainerman and T.C. Sideris: On almost global existence for nonrelativistic wave equations in 3D, Comm. Pure Appl. Math. 49 (1996), 307--321.
  • M. Kovalyov: Resonance-type behaviour in a system of nonlinear wave equations, J. Differential Equations 77 (1989), 73--83.
  • H. Kubo: Blow-up of solutions to semilinear wave equations with initial data of slow decay in low space dimensions, Diff. Integral Eqs. 7 (1994), 315--321.
  • K. Kubota and K. Yokoyama: Global existence of classical solutions to systems of nonlinear wave equations with different speeds of propagation, Japanese J. Math. 27 (2001), 113--202.
  • H. Lindblad: On the lifespan of solutions of nonlinear wave equations with small initial data, Comm. Pure Appl. Math. 43 (1990), 445--472.
  • M. Ohta: Counterexample to global existence for system of nonlinear wave equations with different propagation speeds, Funkcialaj Ekvacioj 46 (2003), 471--477.
  • T.C. Sideris: Global behavior of solutions to nonlinear wave equations in three space dimensions, Comm. Partial Differential Equations 8 (1983), 1283--1323.
  • T.C. Sideris and S.-Y. Tu: Global existence for systems of nonlinear wave equations in 3D with multiple speeds, SIAM J. Math. Anal. 33 (2001), 477--488.
  • C.D. Sogge: Global existence for nonlinear wave equations with multiple speeds; in Harmonic Analysis at Mount Holyoke, Contemp. Math. 320, Amer. Math. Soc., Providence, RI, 2003, 353--366.
  • K. Yokoyama: Global existence of classical solutions to systems of wave equations with critical nonlinearity in three space dimensions, J. Math. Soc. Japan 52 (2000), 609--632.